|
|
|
|
@@ -11,20 +11,30 @@
|
|
|
|
|
#define ENC_COUNT_REV (500 * 11) //12rmp motor
|
|
|
|
|
|
|
|
|
|
// Encoder output to Arduino Interrupt pin. Tracks the pulse count.
|
|
|
|
|
#define ENC_IN_RIGHT_A 2
|
|
|
|
|
#define ENC_IN_RIGHT_A 10
|
|
|
|
|
|
|
|
|
|
// Other encoder output to Arduino to keep track of wheel direction
|
|
|
|
|
// Tracks the direction of rotation.
|
|
|
|
|
#define ENC_IN_RIGHT_B 4
|
|
|
|
|
#define ENC_IN_RIGHT_B 9
|
|
|
|
|
|
|
|
|
|
#define MOTOR_IN1 6
|
|
|
|
|
#define MOTOR_IN2 7
|
|
|
|
|
|
|
|
|
|
#define SPEED 92
|
|
|
|
|
|
|
|
|
|
#define POWERMETER 4
|
|
|
|
|
|
|
|
|
|
// True = Forward; False = Reverse
|
|
|
|
|
bool Direction_right = true;
|
|
|
|
|
|
|
|
|
|
// Keep track of the number of right wheel pulses
|
|
|
|
|
volatile long right_wheel_pulse_count = 0;
|
|
|
|
|
volatile long pulscountswap = 0;
|
|
|
|
|
volatile long absPulseCount = 0;
|
|
|
|
|
|
|
|
|
|
// One-second interval for measurements
|
|
|
|
|
int interval = 1000;
|
|
|
|
|
int swapdelay = 500;
|
|
|
|
|
|
|
|
|
|
// Counters for milliseconds during interval
|
|
|
|
|
long previousMillis = 0;
|
|
|
|
|
@@ -39,28 +49,181 @@ float ang_velocity_right_deg = 0;
|
|
|
|
|
|
|
|
|
|
const float rpm_to_radians = 0.10471975512;
|
|
|
|
|
const float rad_to_deg = 57.29578;
|
|
|
|
|
bool dir = false;
|
|
|
|
|
bool motorruns = false;
|
|
|
|
|
|
|
|
|
|
void right_wheel_pulse();
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
// ***** function calls ******
|
|
|
|
|
float getVPP()
|
|
|
|
|
{
|
|
|
|
|
float result;
|
|
|
|
|
int readValue; // value read from the sensor
|
|
|
|
|
int maxValue = 0; // store max value here
|
|
|
|
|
int minValue = 4096; // store min value here ESP32 ADC resolution
|
|
|
|
|
|
|
|
|
|
uint32_t start_time = millis();
|
|
|
|
|
while((millis()-start_time) < 1000) //sample for 1 Sec
|
|
|
|
|
{
|
|
|
|
|
readValue = analogRead(POWERMETER);
|
|
|
|
|
// see if you have a new maxValue
|
|
|
|
|
if (readValue > maxValue)
|
|
|
|
|
{
|
|
|
|
|
/*record the maximum sensor value*/
|
|
|
|
|
maxValue = readValue;
|
|
|
|
|
}
|
|
|
|
|
if (readValue < minValue)
|
|
|
|
|
{
|
|
|
|
|
/*record the minimum sensor value*/
|
|
|
|
|
minValue = readValue;
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
// Subtract min from max
|
|
|
|
|
result = ((maxValue - minValue) * 3.3)/4096.0; //ESP32 ADC resolution 4096
|
|
|
|
|
log_i("ADC: %0.0f", result);
|
|
|
|
|
return result;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
void run_stop()
|
|
|
|
|
{
|
|
|
|
|
digitalWrite(MOTOR_IN1, LOW);
|
|
|
|
|
digitalWrite(MOTOR_IN2, LOW);
|
|
|
|
|
analogWrite(MOTOR_IN1, 0);
|
|
|
|
|
analogWrite(MOTOR_IN2, 0);
|
|
|
|
|
motorruns = false;
|
|
|
|
|
log_i("stop");
|
|
|
|
|
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
void run_to()
|
|
|
|
|
{
|
|
|
|
|
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
void run_left(int speed = SPEED)
|
|
|
|
|
{
|
|
|
|
|
// run_stop();
|
|
|
|
|
// delay(swapdelay);
|
|
|
|
|
digitalWrite(MOTOR_IN1, LOW);
|
|
|
|
|
analogWrite(MOTOR_IN2, speed);
|
|
|
|
|
log_i("left");
|
|
|
|
|
motorruns = true;
|
|
|
|
|
dir = true;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
void run_right(int speed = SPEED)
|
|
|
|
|
{
|
|
|
|
|
// run_stop();
|
|
|
|
|
// delay(swapdelay);
|
|
|
|
|
digitalWrite(MOTOR_IN2, LOW);
|
|
|
|
|
analogWrite(MOTOR_IN1, speed);
|
|
|
|
|
log_i("right");
|
|
|
|
|
motorruns = true;
|
|
|
|
|
dir = false;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
bool run_to_pos()
|
|
|
|
|
{
|
|
|
|
|
return false;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
void swap_dir()
|
|
|
|
|
{
|
|
|
|
|
if(dir)
|
|
|
|
|
{
|
|
|
|
|
run_right();
|
|
|
|
|
}
|
|
|
|
|
else{
|
|
|
|
|
run_left();
|
|
|
|
|
}
|
|
|
|
|
log_i("swap");
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
long previouspulses = 0;
|
|
|
|
|
|
|
|
|
|
void calibratemotor()
|
|
|
|
|
{
|
|
|
|
|
delay(300);
|
|
|
|
|
|
|
|
|
|
bool stop = false;
|
|
|
|
|
run_right();
|
|
|
|
|
previouspulses = absPulseCount;
|
|
|
|
|
while(!stop)
|
|
|
|
|
{
|
|
|
|
|
delay(100);
|
|
|
|
|
if(absPulseCount - previouspulses > 40)
|
|
|
|
|
{
|
|
|
|
|
log_i("absPulseCount (%i)- previouspulses(%i) = %i", absPulseCount, previouspulses, absPulseCount - previouspulses);
|
|
|
|
|
previouspulses = absPulseCount;
|
|
|
|
|
delay(50);
|
|
|
|
|
}
|
|
|
|
|
else
|
|
|
|
|
{
|
|
|
|
|
stop = true;
|
|
|
|
|
run_stop();
|
|
|
|
|
log_i("left done, %i", absPulseCount);
|
|
|
|
|
absPulseCount = 0;
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
stop = false;
|
|
|
|
|
delay(1000);
|
|
|
|
|
run_left();
|
|
|
|
|
previouspulses = absPulseCount;
|
|
|
|
|
while(!stop)
|
|
|
|
|
{
|
|
|
|
|
delay(100);
|
|
|
|
|
if(absPulseCount - previouspulses < -30)
|
|
|
|
|
{
|
|
|
|
|
log_i("absPulseCount (%i)- previouspulses(%i) = %i", absPulseCount, previouspulses, absPulseCount - previouspulses);
|
|
|
|
|
previouspulses = absPulseCount;
|
|
|
|
|
delay(50);
|
|
|
|
|
}
|
|
|
|
|
else
|
|
|
|
|
{
|
|
|
|
|
stop = true;
|
|
|
|
|
run_stop();
|
|
|
|
|
log_i("right done, %i", absPulseCount);
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
void setup() {
|
|
|
|
|
|
|
|
|
|
// Open the serial port at 9600 bps
|
|
|
|
|
serial.begin(9600);
|
|
|
|
|
|
|
|
|
|
Serial.begin(115200);
|
|
|
|
|
delay(5000);
|
|
|
|
|
log_i("start sketch");
|
|
|
|
|
// Set pin states of the encoder
|
|
|
|
|
pinMode(ENC_IN_RIGHT_A , INPUT_PULLUP);
|
|
|
|
|
pinMode(ENC_IN_RIGHT_B , INPUT);
|
|
|
|
|
pinMode(MOTOR_IN1, OUTPUT);
|
|
|
|
|
pinMode(MOTOR_IN2, OUTPUT);
|
|
|
|
|
pinMode(POWERMETER, ANALOG);
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
// Every time the pin goes high, this is a pulse
|
|
|
|
|
attachInterrupt(digitalPinToInterrupt(ENC_IN_RIGHT_A), right_wheel_pulse, RISING);
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
log_i("init done");
|
|
|
|
|
calibratemotor();
|
|
|
|
|
//run_left();
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
long swaptime = 0;
|
|
|
|
|
|
|
|
|
|
void loop() {
|
|
|
|
|
|
|
|
|
|
// Record the time
|
|
|
|
|
currentMillis = millis();
|
|
|
|
|
|
|
|
|
|
// If one second has passed, print the number of pulses
|
|
|
|
|
if (currentMillis - previousMillis > interval) {
|
|
|
|
|
if ((currentMillis - previousMillis > interval) && (motorruns = true))
|
|
|
|
|
{
|
|
|
|
|
|
|
|
|
|
previousMillis = currentMillis;
|
|
|
|
|
|
|
|
|
|
@@ -69,22 +232,35 @@ void loop() {
|
|
|
|
|
ang_velocity_right = rpm_right * rpm_to_radians;
|
|
|
|
|
ang_velocity_right_deg = ang_velocity_right * rad_to_deg;
|
|
|
|
|
|
|
|
|
|
Serial.print(" Pulses: ");
|
|
|
|
|
Serial.println(right_wheel_pulse_count);
|
|
|
|
|
Serial.print(" Speed: ");
|
|
|
|
|
Serial.print(rpm_right);
|
|
|
|
|
Serial.println(" RPM");
|
|
|
|
|
Serial.print(" Angular Velocity: ");
|
|
|
|
|
Serial.print(rpm_right);
|
|
|
|
|
Serial.print(" rad per second");
|
|
|
|
|
Serial.print("\t");
|
|
|
|
|
Serial.print(ang_velocity_right_deg);
|
|
|
|
|
Serial.println(" deg per second");
|
|
|
|
|
Serial.println();
|
|
|
|
|
|
|
|
|
|
log_i("Pulses/s: %i", right_wheel_pulse_count);
|
|
|
|
|
log_i("Speed: %0.0f", rpm_right);
|
|
|
|
|
log_i("RPM");
|
|
|
|
|
log_i("Angular Velocity: %0.00f", rpm_right);
|
|
|
|
|
log_i("rad per second \t %f deg per second", ang_velocity_right_deg);
|
|
|
|
|
log_i("powermeter %0.0f", getVPP());
|
|
|
|
|
log_i("absulote pulsecount = %i", absPulseCount);
|
|
|
|
|
|
|
|
|
|
right_wheel_pulse_count = 0;
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
// if(pulscountswap > ENC_COUNT_REV/4)
|
|
|
|
|
// {
|
|
|
|
|
// swap_dir();
|
|
|
|
|
// pulscountswap = 0;
|
|
|
|
|
// }
|
|
|
|
|
|
|
|
|
|
// if(millis() - swaptime > 5000)
|
|
|
|
|
// {
|
|
|
|
|
// swaptime = millis();
|
|
|
|
|
// swap_dir();
|
|
|
|
|
|
|
|
|
|
// }
|
|
|
|
|
|
|
|
|
|
// if(rpm_right < 1 && dir)
|
|
|
|
|
// {
|
|
|
|
|
// run_stop();
|
|
|
|
|
// }
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
// Increment the number of pulses by 1
|
|
|
|
|
@@ -102,8 +278,13 @@ void right_wheel_pulse() {
|
|
|
|
|
|
|
|
|
|
if (Direction_right) {
|
|
|
|
|
right_wheel_pulse_count++;
|
|
|
|
|
pulscountswap ++;
|
|
|
|
|
absPulseCount ++;
|
|
|
|
|
}
|
|
|
|
|
else {
|
|
|
|
|
right_wheel_pulse_count--;
|
|
|
|
|
pulscountswap ++;
|
|
|
|
|
absPulseCount --;
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|