v1.7 39kWh Kona/e-Niro support and initial for ioniq 28kWh

This commit is contained in:
Lubos Petrovic
2020-09-16 11:39:46 +02:00
parent 9162dfe150
commit ca25133026
6 changed files with 575 additions and 300 deletions

View File

@@ -46,6 +46,10 @@ Screen list
## Release notes
### v1.7 2020-09-16
- added support for 39.2kWh Hyundai Kona and Kia e-Niro
- added initial support for Hyundai Ioniq 28kWh (not working yet)
### v1.6 2020-06-30
- fixed ble device pairing
- added command to set protocol ISO 15765-4 CAN (11 bit ID, 500 kbit/s) - some vgate adapters freezes during "init at command" phase

214
car_hyundai_ioniq.h Normal file
View File

@@ -0,0 +1,214 @@
#define commandQueueCountHyundaiIoniq 25
#define commandQueueLoopFromHyundaiIoniq 8
String commandQueueHyundaiIoniq[commandQueueCountHyundaiIoniq] = {
"AT Z", // Reset all
"AT I", // Print the version ID
"AT E0", // Echo off
"AT L0", // Linefeeds off
"AT S0", // Printing of spaces on
"AT SP 6", // Select protocol to ISO 15765-4 CAN (11 bit ID, 500 kbit/s)
//"AT AL", // Allow Long (>7 byte) messages
//"AT AR", // Automatically receive
//"AT H1", // Headers on (debug only)
//"AT D1", // Display of the DLC on
//"AT CAF0", // Automatic formatting off
"AT DP",
"AT ST16",
// Loop from (HYUNDAI IONIQ)
// BMS
"atsh7e4",
"2101", // power kw, ...
"2102", // cell voltages, screen 3 only
"2103", // cell voltages, screen 3 only
"2104", // cell voltages, screen 3 only
"2105", // soh, soc, ..
"2106", // cooling water temp
// VMCU
"atsh7e2",
"2101", // speed, ...
"2102", // aux, ...
//"atsh7df",
//"2106",
//"220106",
// ECU - Aircondition
// IONIQ OK
"atsh7b3",
"220100", // in/out temp
"220102", // coolant temp1, 2
// BCM / TPMS
// IONIQ OK
"atsh7a0",
"22c00b", // tire pressure/temp
// CLUSTER MODULE
// IONIQ OK
"atsh7c6",
"22B002", // odo
};
/**
* Init command queue
*/
bool activateCommandQueueForHyundaiIoniq() {
// 28kWh version
params.batteryTotalAvailableKWh = 28;
// Empty and fill command queue
for (int i = 0; i < 100; i++) {
commandQueue[i] = "";
}
for (int i = 0; i < commandQueueCountHyundaiIoniq; i++) {
commandQueue[i] = commandQueueHyundaiIoniq[i];
}
commandQueueLoopFrom = commandQueueLoopFromHyundaiIoniq;
commandQueueCount = commandQueueCountHyundaiIoniq;
return true;
}
/**
Parse merged row
*/
bool parseRowMergedHyundaiIoniq() {
// IONIQ OK
if (commandRequest.equals("2101")) {
params.speedKmh = hexToDec(responseRowMerged.substring(32, 36).c_str(), 2, false) * 0.0155; // / 100.0 *1.609 = real to gps is 1.750
}
// IONIQ !!FAILED!!
if (commandRequest.equals("2102")) {
params.auxPerc = hexToDec(responseRowMerged.substring(50, 52).c_str(), 1, false);
params.auxCurrentAmp = - hexToDec(responseRowMerged.substring(46, 50).c_str(), 2, true) / 1000.0;
}
// Cluster module 7c6
// IONIQ OK
if (commandRequest.equals("22B002")) {
params.odoKm = float(strtol(responseRowMerged.substring(18, 24).c_str(), 0, 16));
}
// Aircon 7b3
// IONIQ OK
if (commandRequest.equals("220100")) {
params.indoorTemperature = (hexToDec(responseRowMerged.substring(16, 18).c_str(), 1, false) / 2) - 40;
params.outdoorTemperature = (hexToDec(responseRowMerged.substring(18, 20).c_str(), 1, false) / 2) - 40;
}
// Aircon 7b3
// IONIQ OK
if (commandRequest.equals("220102") && responseRowMerged.substring(12, 14) == "00") {
params.coolantTemp1C = (hexToDec(responseRowMerged.substring(14, 16).c_str(), 1, false) / 2) - 40;
params.coolantTemp2C = (hexToDec(responseRowMerged.substring(16, 18).c_str(), 1, false) / 2) - 40;
}
// BMS 7e4
// IONIQ FAILED
if (commandRequest.equals("2101")) {
params.cumulativeEnergyChargedKWh = float(strtol(responseRowMerged.substring(82, 90).c_str(), 0, 16)) / 10.0;
if (params.cumulativeEnergyChargedKWhStart == -1)
params.cumulativeEnergyChargedKWhStart = params.cumulativeEnergyChargedKWh;
params.cumulativeEnergyDischargedKWh = float(strtol(responseRowMerged.substring(90, 98).c_str(), 0, 16)) / 10.0;
if (params.cumulativeEnergyDischargedKWhStart == -1)
params.cumulativeEnergyDischargedKWhStart = params.cumulativeEnergyDischargedKWh;
params.auxVoltage = hexToDec(responseRowMerged.substring(64, 66).c_str(), 2, true) / 10.0;
params.batPowerAmp = - hexToDec(responseRowMerged.substring(26, 30).c_str(), 2, true) / 10.0;
params.batVoltage = hexToDec(responseRowMerged.substring(30, 34).c_str(), 2, false) / 10.0;
params.batPowerKw = (params.batPowerAmp * params.batVoltage) / 1000.0;
params.batPowerKwh100 = params.batPowerKw / params.speedKmh * 100;
params.batCellMaxV = hexToDec(responseRowMerged.substring(52, 54).c_str(), 1, false) / 50.0;
params.batCellMinV = hexToDec(responseRowMerged.substring(56, 58).c_str(), 1, false) / 50.0;
params.batModule01TempC = hexToDec(responseRowMerged.substring(38, 40).c_str(), 1, true);
params.batModule02TempC = hexToDec(responseRowMerged.substring(40, 42).c_str(), 1, true);
params.batModule03TempC = hexToDec(responseRowMerged.substring(42, 44).c_str(), 1, true);
params.batModule04TempC = hexToDec(responseRowMerged.substring(44, 46).c_str(), 1, true);
//params.batTempC = hexToDec(responseRowMerged.substring(36, 38).c_str(), 1, true);
//params.batMaxC = hexToDec(responseRowMerged.substring(34, 36).c_str(), 1, true);
//params.batMinC = hexToDec(responseRowMerged.substring(36, 38).c_str(), 1, true);
// This is more accurate than min/max from BMS. It's required to detect kona/eniro cold gates (min 15C is needed > 43kW charging, min 25C is needed > 58kW charging)
params.batMinC = params.batMaxC = params.batModule01TempC;
params.batMinC = (params.batModule02TempC < params.batMinC) ? params.batModule02TempC : params.batMinC;
params.batMinC = (params.batModule03TempC < params.batMinC) ? params.batModule03TempC : params.batMinC;
params.batMinC = (params.batModule04TempC < params.batMinC) ? params.batModule04TempC : params.batMinC;
params.batMaxC = (params.batModule02TempC > params.batMaxC) ? params.batModule02TempC : params.batMaxC;
params.batMaxC = (params.batModule03TempC > params.batMaxC) ? params.batModule03TempC : params.batMaxC;
params.batMaxC = (params.batModule04TempC > params.batMaxC) ? params.batModule04TempC : params.batMaxC;
params.batTempC = params.batMinC;
params.batInletC = hexToDec(responseRowMerged.substring(50, 52).c_str(), 1, true);
if (params.speedKmh < 15 && params.batPowerKw >= 1 && params.socPerc > 0 && params.socPerc <= 100) {
params.chargingGraphKw[int(params.socPerc)] = params.batPowerKw;
params.chargingGraphMinTempC[int(params.socPerc)] = params.batMinC;
params.chargingGraphMaxTempC[int(params.socPerc)] = params.batMaxC;
}
}
// BMS 7e4
// IONIQ FAILED
if (commandRequest.equals("2102") && responseRowMerged.substring(12, 14) == "FF") {
for (int i = 0; i < 32; i++) {
params.cellVoltage[i] = hexToDec(responseRowMerged.substring(14 + (i * 2), 14 + (i * 2) + 2).c_str(), 1, false) / 50;
}
}
// BMS 7e4
// IONIQ FAILED
if (commandRequest.equals("2103")) {
for (int i = 0; i < 32; i++) {
params.cellVoltage[32 + i] = hexToDec(responseRowMerged.substring(14 + (i * 2), 14 + (i * 2) + 2).c_str(), 1, false) / 50;
}
}
// BMS 7e4
// IONIQ FAILED
if (commandRequest.equals("2104")) {
for (int i = 0; i < 32; i++) {
params.cellVoltage[64 + i] = hexToDec(responseRowMerged.substring(14 + (i * 2), 14 + (i * 2) + 2).c_str(), 1, false) / 50;
}
}
// BMS 7e4
// IONIQ FAILED
if (commandRequest.equals("2105")) {
params.sohPerc = hexToDec(responseRowMerged.substring(56, 60).c_str(), 2, false) / 10.0;
params.socPerc = hexToDec(responseRowMerged.substring(68, 70).c_str(), 1, false) / 2.0;
// Soc10ced table, record x0% CEC/CED table (ex. 90%->89%, 80%->79%)
if (oldParams.socPerc - params.socPerc > 0) {
byte index = (int(params.socPerc) == 4) ? 0 : (int)(params.socPerc / 10) + 1;
if ((int(params.socPerc) % 10 == 9 || int(params.socPerc) == 4) && params.soc10ced[index] == -1) {
struct tm now;
getLocalTime(&now, 0);
time_t time_now_epoch = mktime(&now);
params.soc10ced[index] = params.cumulativeEnergyDischargedKWh;
params.soc10cec[index] = params.cumulativeEnergyChargedKWh;
params.soc10odo[index] = params.odoKm;
params.soc10time[index] = time_now_epoch;
}
}
params.batHeaterC = hexToDec(responseRowMerged.substring(52, 54).c_str(), 1, true);
//
for (int i = 30; i < 32; i++) { // ai/aj position
params.cellVoltage[96 - 30 + i] = hexToDec(responseRowMerged.substring(14 + (i * 2), 14 + (i * 2) + 2).c_str(), 1, false) / 50;
}
}
// BMS 7e4
// IONIQ FAILED
if (commandRequest.equals("2106")) {
params.coolingWaterTempC = hexToDec(responseRowMerged.substring(14, 16).c_str(), 1, false);
}
// TPMS 7a0
// IONIQ OK
if (commandRequest.equals("22c00b")) {
params.tireFrontLeftPressureBar = hexToDec(responseRowMerged.substring(14, 16).c_str(), 2, false) / 72.51886900361; // === OK Valid *0.2 / 14.503773800722
params.tireFrontRightPressureBar = hexToDec(responseRowMerged.substring(22, 24).c_str(), 2, false) / 72.51886900361; // === OK Valid *0.2 / 14.503773800722
params.tireRearRightPressureBar = hexToDec(responseRowMerged.substring(30, 32).c_str(), 2, false) / 72.51886900361; // === OK Valid *0.2 / 14.503773800722
params.tireRearLeftPressureBar = hexToDec(responseRowMerged.substring(38, 40).c_str(), 2, false) / 72.51886900361; // === OK Valid *0.2 / 14.503773800722
params.tireFrontLeftTempC = hexToDec(responseRowMerged.substring(16, 18).c_str(), 2, false) - 50; // === OK Valid
params.tireFrontRightTempC = hexToDec(responseRowMerged.substring(24, 26).c_str(), 2, false) - 50; // === OK Valid
params.tireRearRightTempC = hexToDec(responseRowMerged.substring(32, 34).c_str(), 2, false) - 50; // === OK Valid
params.tireRearLeftTempC = hexToDec(responseRowMerged.substring(40, 42).c_str(), 2, false) - 50; // === OK Valid
}
return true;
}

204
car_kia_eniro.h Normal file
View File

@@ -0,0 +1,204 @@
#define commandQueueCountKiaENiro 25
#define commandQueueLoopFromKiaENiro 8
String commandQueueKiaENiro[commandQueueCountKiaENiro] = {
"AT Z", // Reset all
"AT I", // Print the version ID
"AT E0", // Echo off
"AT L0", // Linefeeds off
"AT S0", // Printing of spaces on
"AT SP 6", // Select protocol to ISO 15765-4 CAN (11 bit ID, 500 kbit/s)
//"AT AL", // Allow Long (>7 byte) messages
//"AT AR", // Automatically receive
//"AT H1", // Headers on (debug only)
//"AT D1", // Display of the DLC on
//"AT CAF0", // Automatic formatting off
"AT DP",
"AT ST16",
// Loop from (KIA ENIRO)
// BMS
"atsh7e4",
"220101", // power kw, ...
"220102", // cell voltages, screen 3 only
"220103", // cell voltages, screen 3 only
"220104", // cell voltages, screen 3 only
"220105", // soh, soc, ..
"220106", // cooling water temp
// VMCU
"atsh7e2",
"2101", // speed, ...
"2102", // aux, ...
//"atsh7df",
//"2106",
//"220106",
// ECU - Aircondition
"atsh7b3",
"220100", // in/out temp
"220102", // coolant temp1, 2
// BCM / TPMS
"atsh7a0",
"22c00b", // tire pressure/temp
// CLUSTER MODULE
"atsh7c6",
"22B002", // odo
};
/**
* Init command queue
*/
bool activateCommandQueueForKiaENiro() {
// 39 or 64 kWh model?
params.batteryTotalAvailableKWh = 64;
if (settings.carType == CAR_KIA_ENIRO_2020_39 || settings.carType == CAR_HYUNDAI_KONA_2020_39) {
params.batteryTotalAvailableKWh = 39.2;
}
// Empty and fill command queue
for (int i = 0; i < 100; i++) {
commandQueue[i] = "";
}
for (int i = 0; i < commandQueueCountKiaENiro; i++) {
commandQueue[i] = commandQueueKiaENiro[i];
}
commandQueueLoopFrom = commandQueueLoopFromKiaENiro;
commandQueueCount = commandQueueCountKiaENiro;
return true;
}
/**
Parse merged row
*/
bool parseRowMergedKiaENiro() {
if (commandRequest.equals("2101")) {
params.speedKmh = hexToDec(responseRowMerged.substring(32, 36).c_str(), 2, false) * 0.0155; // / 100.0 *1.609 = real to gps is 1.750
}
if (commandRequest.equals("2102")) {
params.auxPerc = hexToDec(responseRowMerged.substring(50, 52).c_str(), 1, false);
params.auxCurrentAmp = - hexToDec(responseRowMerged.substring(46, 50).c_str(), 2, true) / 1000.0;
}
// Cluster module 7c6
if (commandRequest.equals("22B002")) {
params.odoKm = float(strtol(responseRowMerged.substring(18, 24).c_str(), 0, 16));
}
// Aircon 7b3
if (commandRequest.equals("220100")) {
params.indoorTemperature = (hexToDec(responseRowMerged.substring(16, 18).c_str(), 1, false) / 2) - 40;
params.outdoorTemperature = (hexToDec(responseRowMerged.substring(18, 20).c_str(), 1, false) / 2) - 40;
}
// Aircon 7b3
if (commandRequest.equals("220102") && responseRowMerged.substring(12, 14) == "00") {
params.coolantTemp1C = (hexToDec(responseRowMerged.substring(14, 16).c_str(), 1, false) / 2) - 40;
params.coolantTemp2C = (hexToDec(responseRowMerged.substring(16, 18).c_str(), 1, false) / 2) - 40;
}
// BMS 7e4
if (commandRequest.equals("220101")) {
params.cumulativeEnergyChargedKWh = float(strtol(responseRowMerged.substring(82, 90).c_str(), 0, 16)) / 10.0;
if (params.cumulativeEnergyChargedKWhStart == -1)
params.cumulativeEnergyChargedKWhStart = params.cumulativeEnergyChargedKWh;
params.cumulativeEnergyDischargedKWh = float(strtol(responseRowMerged.substring(90, 98).c_str(), 0, 16)) / 10.0;
if (params.cumulativeEnergyDischargedKWhStart == -1)
params.cumulativeEnergyDischargedKWhStart = params.cumulativeEnergyDischargedKWh;
params.auxVoltage = hexToDec(responseRowMerged.substring(64, 66).c_str(), 2, true) / 10.0;
params.batPowerAmp = - hexToDec(responseRowMerged.substring(26, 30).c_str(), 2, true) / 10.0;
params.batVoltage = hexToDec(responseRowMerged.substring(30, 34).c_str(), 2, false) / 10.0;
params.batPowerKw = (params.batPowerAmp * params.batVoltage) / 1000.0;
params.batPowerKwh100 = params.batPowerKw / params.speedKmh * 100;
params.batCellMaxV = hexToDec(responseRowMerged.substring(52, 54).c_str(), 1, false) / 50.0;
params.batCellMinV = hexToDec(responseRowMerged.substring(56, 58).c_str(), 1, false) / 50.0;
params.batModule01TempC = hexToDec(responseRowMerged.substring(38, 40).c_str(), 1, true);
params.batModule02TempC = hexToDec(responseRowMerged.substring(40, 42).c_str(), 1, true);
params.batModule03TempC = hexToDec(responseRowMerged.substring(42, 44).c_str(), 1, true);
params.batModule04TempC = hexToDec(responseRowMerged.substring(44, 46).c_str(), 1, true);
//params.batTempC = hexToDec(responseRowMerged.substring(36, 38).c_str(), 1, true);
//params.batMaxC = hexToDec(responseRowMerged.substring(34, 36).c_str(), 1, true);
//params.batMinC = hexToDec(responseRowMerged.substring(36, 38).c_str(), 1, true);
// This is more accurate than min/max from BMS. It's required to detect kona/eniro cold gates (min 15C is needed > 43kW charging, min 25C is needed > 58kW charging)
params.batMinC = params.batMaxC = params.batModule01TempC;
params.batMinC = (params.batModule02TempC < params.batMinC) ? params.batModule02TempC : params.batMinC;
params.batMinC = (params.batModule03TempC < params.batMinC) ? params.batModule03TempC : params.batMinC;
params.batMinC = (params.batModule04TempC < params.batMinC) ? params.batModule04TempC : params.batMinC;
params.batMaxC = (params.batModule02TempC > params.batMaxC) ? params.batModule02TempC : params.batMaxC;
params.batMaxC = (params.batModule03TempC > params.batMaxC) ? params.batModule03TempC : params.batMaxC;
params.batMaxC = (params.batModule04TempC > params.batMaxC) ? params.batModule04TempC : params.batMaxC;
params.batTempC = params.batMinC;
params.batInletC = hexToDec(responseRowMerged.substring(50, 52).c_str(), 1, true);
if (params.speedKmh < 15 && params.batPowerKw >= 1 && params.socPerc > 0 && params.socPerc <= 100) {
params.chargingGraphKw[int(params.socPerc)] = params.batPowerKw;
params.chargingGraphMinTempC[int(params.socPerc)] = params.batMinC;
params.chargingGraphMaxTempC[int(params.socPerc)] = params.batMaxC;
}
}
// BMS 7e4
if (commandRequest.equals("220102") && responseRowMerged.substring(12, 14) == "FF") {
for (int i = 0; i < 32; i++) {
params.cellVoltage[i] = hexToDec(responseRowMerged.substring(14 + (i * 2), 14 + (i * 2) + 2).c_str(), 1, false) / 50;
}
}
// BMS 7e4
if (commandRequest.equals("220103")) {
for (int i = 0; i < 32; i++) {
params.cellVoltage[32 + i] = hexToDec(responseRowMerged.substring(14 + (i * 2), 14 + (i * 2) + 2).c_str(), 1, false) / 50;
}
}
// BMS 7e4
if (commandRequest.equals("220104")) {
for (int i = 0; i < 32; i++) {
params.cellVoltage[64 + i] = hexToDec(responseRowMerged.substring(14 + (i * 2), 14 + (i * 2) + 2).c_str(), 1, false) / 50;
}
}
// BMS 7e4
if (commandRequest.equals("220105")) {
params.sohPerc = hexToDec(responseRowMerged.substring(56, 60).c_str(), 2, false) / 10.0;
params.socPerc = hexToDec(responseRowMerged.substring(68, 70).c_str(), 1, false) / 2.0;
// Soc10ced table, record x0% CEC/CED table (ex. 90%->89%, 80%->79%)
if (oldParams.socPerc - params.socPerc > 0) {
byte index = (int(params.socPerc) == 4) ? 0 : (int)(params.socPerc / 10) + 1;
if ((int(params.socPerc) % 10 == 9 || int(params.socPerc) == 4) && params.soc10ced[index] == -1) {
struct tm now;
getLocalTime(&now, 0);
time_t time_now_epoch = mktime(&now);
params.soc10ced[index] = params.cumulativeEnergyDischargedKWh;
params.soc10cec[index] = params.cumulativeEnergyChargedKWh;
params.soc10odo[index] = params.odoKm;
params.soc10time[index] = time_now_epoch;
}
}
params.batHeaterC = hexToDec(responseRowMerged.substring(52, 54).c_str(), 1, true);
//
for (int i = 30; i < 32; i++) { // ai/aj position
params.cellVoltage[96 - 30 + i] = hexToDec(responseRowMerged.substring(14 + (i * 2), 14 + (i * 2) + 2).c_str(), 1, false) / 50;
}
}
// BMS 7e4
if (commandRequest.equals("220106")) {
params.coolingWaterTempC = hexToDec(responseRowMerged.substring(14, 16).c_str(), 1, false);
}
// TPMS 7a0
if (commandRequest.equals("22c00b")) {
params.tireFrontLeftPressureBar = hexToDec(responseRowMerged.substring(14, 16).c_str(), 2, false) / 72.51886900361; // === OK Valid *0.2 / 14.503773800722
params.tireFrontRightPressureBar = hexToDec(responseRowMerged.substring(22, 24).c_str(), 2, false) / 72.51886900361; // === OK Valid *0.2 / 14.503773800722
params.tireRearRightPressureBar = hexToDec(responseRowMerged.substring(30, 32).c_str(), 2, false) / 72.51886900361; // === OK Valid *0.2 / 14.503773800722
params.tireRearLeftPressureBar = hexToDec(responseRowMerged.substring(38, 40).c_str(), 2, false) / 72.51886900361; // === OK Valid *0.2 / 14.503773800722
params.tireFrontLeftTempC = hexToDec(responseRowMerged.substring(16, 18).c_str(), 2, false) - 50; // === OK Valid
params.tireFrontRightTempC = hexToDec(responseRowMerged.substring(24, 26).c_str(), 2, false) - 50; // === OK Valid
params.tireRearRightTempC = hexToDec(responseRowMerged.substring(32, 34).c_str(), 2, false) - 50; // === OK Valid
params.tireRearLeftTempC = hexToDec(responseRowMerged.substring(40, 42).c_str(), 2, false) - 50; // === OK Valid
}
return true;
}

Binary file not shown.

View File

@@ -1,6 +1,6 @@
/*
KIA eNiro Dashboard 1.6, 2020-06-30
KIA eNiro Dashboard 1.7, 2020-09-16
!! working only with OBD BLE 4.0 adapters
!! Supported adapter is Vgate ICar Pro (must be BLE4.0 version)
!! Not working with standard BLUETOOTH 3 adapters
@@ -20,7 +20,7 @@
---
eNiro/Kona chargins limits depending on battery temperature (min.value of 01-04 battery module)
>= 35°C BMS allows max 180A
>= 25°C without limit 200A
>= 25°C without limit (200A)
>= 15°C BMS allows max 120A
>= 5°C BMS allows max 90A
>= 1°C BMS allows max 60A
@@ -32,6 +32,9 @@
#include "BLEDevice.h"
#include <EEPROM.h>
#include <sys/time.h>
#include "struct.h"
#include "car_kia_eniro.h"
#include "car_hyundai_ioniq.h"
// PLEASE CHANGE THIS SETTING for your BLE4
uint32_t PIN = 1234;
@@ -82,62 +85,6 @@ bool btnLeftPressed = true;
bool btnMiddlePressed = true;
bool btnRightPressed = true;
// Commands loop
#define commandQueueCount 25
#define commandQueueLoopFrom 7
String responseRow;
String responseRowMerged;
byte commandQueueIndex;
bool canSendNextAtCommand = false;
String commandRequest = "";
String commandQueue[commandQueueCount] = {
"AT Z", // Reset all
"AT I", // Print the version ID
"AT E0", // Echo off
"AT L0", // Linefeeds off
"AT S0", // Printing of spaces on
"AT SP 6", // Select protocol to ISO 15765-4 CAN (11 bit ID, 500 kbit/s)
//"AT AL", // Allow Long (>7 byte) messages
//"AT AR", // Automatically receive
//"AT H1", // Headers on (debug only)
//"AT D1", // Display of the DLC on
//"AT CAF0", // Automatic formatting off
"AT DP",
"AT ST16",
// Loop from (KIA ENIRO)
// BMS
"atsh7e4",
"220101", // power kw, ...
"220102", // cell voltages, screen 3 only
"220103", // cell voltages, screen 3 only
"220104", // cell voltages, screen 3 only
"220105", // soh, soc, ..
"220106", // cooling water temp
// VMCU
"atsh7e2",
"2101", // speed, ...
"2102", // aux, ...
//"atsh7df",
//"2106",
//"220106",
// ECU - Aircondition
"atsh7b3",
"220100", // in/out temp
"220102", // coolant temp1, 2
// BCM / TPMS
"atsh7a0",
"22c00b", // tire pressure/temp
// CLUSTER MODULE
"atsh7c6",
"22B002", // odo
};
// Menu id/parent/title
typedef struct {
int16_t id;
@@ -148,7 +95,7 @@ typedef struct {
char serviceUUID[40];
} MENU_ITEM;
#define menuItemsCount 40
#define menuItemsCount 42
bool menuVisible = false;
uint16_t menuCurrent = 0;
uint8_t menuItemSelected = 0;
@@ -164,9 +111,11 @@ MENU_ITEM menuItems[menuItemsCount] = {
{9, 0, -1, "Save settings"},
{100, 1, 0, "<- parent menu"},
{101, 1, -1, "Kia eNiro 2020"},
{102, 1, -1, "Hyundai Kona 2020"},
{103, 1, -1, "Hyundai Ioniq 2018"},
{101, 1, -1, "Kia eNiro 2020 64kWh"},
{102, 1, -1, "Hyundai Kona 2020 64kWh"},
{103, 1, -1, "Hyundai Ioniq 2018 28kWh"},
{104, 1, -1, "Kia eNiro 2020 39kWh"},
{105, 1, -1, "Hyundai Kona 2020 39kWh"},
{300, 3, 0, "<- parent menu"},
{301, 3, -1, "Screen rotation"},
@@ -205,78 +154,6 @@ MENU_ITEM menuItems[menuItemsCount] = {
{10009, 9999, -1, "-"},
};
// Structure with realtime values
typedef struct {
float speedKmh;
float odoKm;
float socPerc;
float sohPerc;
float cumulativeEnergyChargedKWh;
float cumulativeEnergyChargedKWhStart;
float cumulativeEnergyDischargedKWh;
float cumulativeEnergyDischargedKWhStart;
float batPowerAmp;
float batPowerKw;
float batPowerKwh100;
float batVoltage;
float batCellMinV;
float batCellMaxV;
float batTempC;
float batHeaterC;
float batInletC;
float batMinC;
float batMaxC;
float batModule01TempC;
float batModule02TempC;
float batModule03TempC;
float batModule04TempC;
float coolingWaterTempC;
float coolantTemp1C;
float coolantTemp2C;
float auxPerc;
float auxCurrentAmp;
float auxVoltage;
float indoorTemperature;
float outdoorTemperature;
float tireFrontLeftTempC;
float tireFrontLeftPressureBar;
float tireFrontRightTempC;
float tireFrontRightPressureBar;
float tireRearLeftTempC;
float tireRearLeftPressureBar;
float tireRearRightTempC;
float tireRearRightPressureBar;
float cellVoltage[98]; // 1..98 has index 0..97
// Screen - charging graph
float chargingGraphKw[101]; // 0..100% .. how many HW in each step
float chargingGraphMinTempC[101]; // 0..100% .. Min temp in.C
float chargingGraphMaxTempC[101]; // 0..100% .. Max temp in.C
// Screen - consumption info
float soc10ced[11]; // 0..10 (5%, 10%, 20%, 30%, 40%).. (never discharged soc% to 0)
float soc10cec[11]; // 0..10 (5%, 10%, 20%, 30%, 40%)..
float soc10odo[11]; // odo history
time_t soc10time[11]; // time for avg speed
} PARAMS_STRUC;
// Setting stored to flash
typedef struct {
byte initFlag; // 183 value
byte settingsVersion; // 1
uint16_t carType; // 0 - Kia eNiro 2020, 1 - Hyundai Kona 2020, 2 - Hyudai Ioniq 2018
char obdMacAddress[20];
char serviceUUID[40];
char charTxUUID[40];
char charRxUUID[40];
byte displayRotation; // 0 portrait, 1 landscape, 2.., 3..
char distanceUnit; // k - kilometers
char temperatureUnit; // c - celsius
char pressureUnit; // b - bar
} SETTINGS_STRUC;
PARAMS_STRUC params; // Realtime sensor values
PARAMS_STRUC oldParams; // Old states used for change detection (draw optimization)
SETTINGS_STRUC settings, tmpSettings; // Settings stored into flash
/**
Load settings from flash memory, upgrade structure if version differs
*/
@@ -319,7 +196,7 @@ bool loadSettings() {
// Init
settings.initFlag = 183;
settings.settingsVersion = 1;
settings.carType = 0; // Kia eNiro
settings.carType = CAR_KIA_ENIRO_2020_64;
// Default OBD adapter MAC and UUID's
tmpStr = "00:00:00:00:00:00"; // Pair via menu (middle button)
@@ -354,6 +231,15 @@ bool loadSettings() {
}
}
// Load command queue
if (settings.carType == CAR_KIA_ENIRO_2020_64 || settings.carType == CAR_HYUNDAI_KONA_2020_64 ||
settings.carType == CAR_KIA_ENIRO_2020_39 || settings.carType == CAR_HYUNDAI_KONA_2020_39) {
activateCommandQueueForKiaENiro();
}
if (settings.carType == CAR_HYUNDAI_IONIQ_2018) {
activateCommandQueueForHyundaiIoniq();
}
return true;
}
@@ -419,35 +305,6 @@ bool initStructure() {
return true;
}
/**
Hex to dec (1-2 byte values, signed/unsigned)
For 4 byte change int to long and add part for signed numbers
*/
float hexToDec(String hexString, byte bytes = 2, bool signedNum = true) {
unsigned int decValue = 0;
unsigned int nextInt;
for (int i = 0; i < hexString.length(); i++) {
nextInt = int(hexString.charAt(i));
if (nextInt >= 48 && nextInt <= 57) nextInt = map(nextInt, 48, 57, 0, 9);
if (nextInt >= 65 && nextInt <= 70) nextInt = map(nextInt, 65, 70, 10, 15);
if (nextInt >= 97 && nextInt <= 102) nextInt = map(nextInt, 97, 102, 10, 15);
nextInt = constrain(nextInt, 0, 15);
decValue = (decValue * 16) + nextInt;
}
// Unsigned - do nothing
if (!signedNum) {
return decValue;
}
// Signed for 1, 2 bytes
if (bytes == 1) {
return (decValue > 127 ? (float)decValue - 256.0 : decValue);
}
return (decValue > 32767 ? (float)decValue - 65536.0 : decValue);
}
/**
Convert km to km or miles
*/
@@ -807,7 +664,7 @@ bool drawSceneSpeed(bool force) {
sprintf(tmpStr3, " %01.00f%%", params.socPerc);
tft.drawString(tmpStr3, 320, 64, GFXFF);
if (params.socPerc > 0) {
sprintf(tmpStr3, " %01.01f", 64 * (params.socPerc / 100));
sprintf(tmpStr3, " %01.01f", params.batteryTotalAvailableKWh * (params.socPerc / 100));
tft.drawString(tmpStr3, 320, 104, GFXFF);
tft.drawString(" kWh", 320, 144, GFXFF);
}
@@ -1160,9 +1017,11 @@ bool menuItemClick() {
// Other menus
switch (tmpMenuItem.id) {
// Set vehicle type
case 101: settings.carType = 0; break;
case 102: settings.carType = 1; break;
case 103: settings.carType = 2; break;
case 101: settings.carType = CAR_KIA_ENIRO_2020_64; break;
case 102: settings.carType = CAR_HYUNDAI_KONA_2020_64; break;
case 103: settings.carType = CAR_HYUNDAI_IONIQ_2018; break;
case 104: settings.carType = CAR_KIA_ENIRO_2020_39; break;
case 105: settings.carType = CAR_HYUNDAI_KONA_2020_39; break;
// Screen orientation
case 3011: settings.displayRotation = 1; tft.setRotation(settings.displayRotation); break;
case 3012: settings.displayRotation = 3; tft.setRotation(settings.displayRotation); break;
@@ -1294,136 +1153,12 @@ bool parseRowMerged() {
Serial.print("merged:");
Serial.println(responseRowMerged);
// IONIQ OK
if (commandRequest.equals("2101")) {
params.speedKmh = hexToDec(responseRowMerged.substring(32, 36).c_str(), 2, false) * 0.0155; // / 100.0 *1.609 = real to gps is 1.750
if (settings.carType == CAR_KIA_ENIRO_2020_64 || settings.carType == CAR_HYUNDAI_KONA_2020_64 ||
settings.carType == CAR_KIA_ENIRO_2020_39 || settings.carType == CAR_HYUNDAI_KONA_2020_39) {
parseRowMergedKiaENiro();
}
// IONIQ FAILED
if (commandRequest.equals("2102")) {
params.auxPerc = hexToDec(responseRowMerged.substring(50, 52).c_str(), 1, false);
params.auxCurrentAmp = - hexToDec(responseRowMerged.substring(46, 50).c_str(), 2, true) / 1000.0;
}
// Cluster module 7c6
// IONIQ OK
if (commandRequest.equals("22B002")) {
params.odoKm = float(strtol(responseRowMerged.substring(18, 24).c_str(), 0, 16));
}
// Aircon 7b3
// IONIQ OK
if (commandRequest.equals("220100")) {
params.indoorTemperature = (hexToDec(responseRowMerged.substring(16, 18).c_str(), 1, false) / 2) - 40;
params.outdoorTemperature = (hexToDec(responseRowMerged.substring(18, 20).c_str(), 1, false) / 2) - 40;
}
// Aircon 7b3
// IONIQ OK
if (commandRequest.equals("220102") && responseRowMerged.substring(12, 14) == "00") {
params.coolantTemp1C = (hexToDec(responseRowMerged.substring(14, 16).c_str(), 1, false) / 2) - 40;
params.coolantTemp2C = (hexToDec(responseRowMerged.substring(16, 18).c_str(), 1, false) / 2) - 40;
}
// BMS 7e4
// IONIQ FAILED
if (commandRequest.equals("220101")) {
params.cumulativeEnergyChargedKWh = float(strtol(responseRowMerged.substring(82, 90).c_str(), 0, 16)) / 10.0;
if (params.cumulativeEnergyChargedKWhStart == -1)
params.cumulativeEnergyChargedKWhStart = params.cumulativeEnergyChargedKWh;
params.cumulativeEnergyDischargedKWh = float(strtol(responseRowMerged.substring(90, 98).c_str(), 0, 16)) / 10.0;
if (params.cumulativeEnergyDischargedKWhStart == -1)
params.cumulativeEnergyDischargedKWhStart = params.cumulativeEnergyDischargedKWh;
params.auxVoltage = hexToDec(responseRowMerged.substring(64, 66).c_str(), 2, true) / 10.0;
params.batPowerAmp = - hexToDec(responseRowMerged.substring(26, 30).c_str(), 2, true) / 10.0;
params.batVoltage = hexToDec(responseRowMerged.substring(30, 34).c_str(), 2, false) / 10.0;
params.batPowerKw = (params.batPowerAmp * params.batVoltage) / 1000.0;
params.batPowerKwh100 = params.batPowerKw / params.speedKmh * 100;
params.batCellMaxV = hexToDec(responseRowMerged.substring(52, 54).c_str(), 1, false) / 50.0;
params.batCellMinV = hexToDec(responseRowMerged.substring(56, 58).c_str(), 1, false) / 50.0;
params.batModule01TempC = hexToDec(responseRowMerged.substring(38, 40).c_str(), 1, true);
params.batModule02TempC = hexToDec(responseRowMerged.substring(40, 42).c_str(), 1, true);
params.batModule03TempC = hexToDec(responseRowMerged.substring(42, 44).c_str(), 1, true);
params.batModule04TempC = hexToDec(responseRowMerged.substring(44, 46).c_str(), 1, true);
//params.batTempC = hexToDec(responseRowMerged.substring(36, 38).c_str(), 1, true);
//params.batMaxC = hexToDec(responseRowMerged.substring(34, 36).c_str(), 1, true);
//params.batMinC = hexToDec(responseRowMerged.substring(36, 38).c_str(), 1, true);
// This is more accurate than min/max from BMS. It's required to detect kona/eniro cold gates (min 15C is needed > 43kW charging, min 25C is needed > 58kW charging)
params.batMinC = params.batMaxC = params.batModule01TempC;
params.batMinC = (params.batModule02TempC < params.batMinC) ? params.batModule02TempC : params.batMinC ;
params.batMinC = (params.batModule03TempC < params.batMinC) ? params.batModule03TempC : params.batMinC ;
params.batMinC = (params.batModule04TempC < params.batMinC) ? params.batModule04TempC : params.batMinC ;
params.batMaxC = (params.batModule02TempC > params.batMaxC) ? params.batModule02TempC : params.batMaxC ;
params.batMaxC = (params.batModule03TempC > params.batMaxC) ? params.batModule03TempC : params.batMaxC ;
params.batMaxC = (params.batModule04TempC > params.batMaxC) ? params.batModule04TempC : params.batMaxC ;
params.batTempC = params.batMinC;
params.batInletC = hexToDec(responseRowMerged.substring(50, 52).c_str(), 1, true);
if (params.speedKmh < 15 && params.batPowerKw >= 1 && params.socPerc > 0 && params.socPerc <= 100) {
params.chargingGraphKw[int(params.socPerc)] = params.batPowerKw;
params.chargingGraphMinTempC[int(params.socPerc)] = params.batMinC;
params.chargingGraphMaxTempC[int(params.socPerc)] = params.batMaxC;
}
}
// BMS 7e4
// IONIQ FAILED
if (commandRequest.equals("220102") && responseRowMerged.substring(12, 14) == "FF") {
for (int i = 0; i < 32; i++) {
params.cellVoltage[i] = hexToDec(responseRowMerged.substring(14 + (i * 2), 14 + (i * 2) + 2).c_str(), 1, false) / 50;
}
}
// BMS 7e4
// IONIQ FAILED
if (commandRequest.equals("220103")) {
for (int i = 0; i < 32; i++) {
params.cellVoltage[32 + i] = hexToDec(responseRowMerged.substring(14 + (i * 2), 14 + (i * 2) + 2).c_str(), 1, false) / 50;
}
}
// BMS 7e4
// IONIQ FAILED
if (commandRequest.equals("220104")) {
for (int i = 0; i < 32; i++) {
params.cellVoltage[64 + i] = hexToDec(responseRowMerged.substring(14 + (i * 2), 14 + (i * 2) + 2).c_str(), 1, false) / 50;
}
}
// BMS 7e4
// IONIQ FAILED
if (commandRequest.equals("220105")) {
params.sohPerc = hexToDec(responseRowMerged.substring(56, 60).c_str(), 2, false) / 10.0;
params.socPerc = hexToDec(responseRowMerged.substring(68, 70).c_str(), 1, false) / 2.0;
// Soc10ced table, record x0% CEC/CED table (ex. 90%->89%, 80%->79%)
if (oldParams.socPerc - params.socPerc > 0) {
byte index = (int(params.socPerc) == 4) ? 0 : (int)(params.socPerc / 10) + 1;
if ((int(params.socPerc) % 10 == 9 || int(params.socPerc) == 4) && params.soc10ced[index] == -1) {
struct tm now;
getLocalTime(&now, 0);
time_t time_now_epoch = mktime(&now);
params.soc10ced[index] = params.cumulativeEnergyDischargedKWh;
params.soc10cec[index] = params.cumulativeEnergyChargedKWh;
params.soc10odo[index] = params.odoKm;
params.soc10time[index] = time_now_epoch;
}
}
params.batHeaterC = hexToDec(responseRowMerged.substring(52, 54).c_str(), 1, true);
//
for (int i = 30; i < 32; i++) { // ai/aj position
params.cellVoltage[96 - 30 + i] = hexToDec(responseRowMerged.substring(14 + (i * 2), 14 + (i * 2) + 2).c_str(), 1, false) / 50;
}
}
// BMS 7e4
// IONIQ FAILED
if (commandRequest.equals("220106")) {
params.coolingWaterTempC = hexToDec(responseRowMerged.substring(14, 16).c_str(), 1, false);
}
// TPMS 7a0
// IONIQ OK
if (commandRequest.equals("22c00b")) {
params.tireFrontLeftPressureBar = hexToDec(responseRowMerged.substring(14, 16).c_str(), 2, false) / 72.51886900361; // === OK Valid *0.2 / 14.503773800722
params.tireFrontRightPressureBar = hexToDec(responseRowMerged.substring(22, 24).c_str(), 2, false) / 72.51886900361; // === OK Valid *0.2 / 14.503773800722
params.tireRearRightPressureBar = hexToDec(responseRowMerged.substring(30, 32).c_str(), 2, false) / 72.51886900361; // === OK Valid *0.2 / 14.503773800722
params.tireRearLeftPressureBar = hexToDec(responseRowMerged.substring(38, 40).c_str(), 2, false) / 72.51886900361; // === OK Valid *0.2 / 14.503773800722
params.tireFrontLeftTempC = hexToDec(responseRowMerged.substring(16, 18).c_str(), 2, false) - 50; // === OK Valid
params.tireFrontRightTempC = hexToDec(responseRowMerged.substring(24, 26).c_str(), 2, false) - 50; // === OK Valid
params.tireRearRightTempC = hexToDec(responseRowMerged.substring(32, 34).c_str(), 2, false) - 50; // === OK Valid
params.tireRearLeftTempC = hexToDec(responseRowMerged.substring(40, 42).c_str(), 2, false) - 50; // === OK Valid
if (settings.carType == CAR_HYUNDAI_IONIQ_2018) {
parseRowMergedHyundaiIoniq();
}
return true;

118
struct.h Normal file
View File

@@ -0,0 +1,118 @@
#define CAR_KIA_ENIRO_2020_64 0
#define CAR_HYUNDAI_KONA_2020_64 1
#define CAR_HYUNDAI_IONIQ_2018 2
#define CAR_KIA_ENIRO_2020_39 3
#define CAR_HYUNDAI_KONA_2020_39 4
// Commands loop
byte commandQueueCount;
byte commandQueueLoopFrom;
String commandQueue[100];
String responseRow;
String responseRowMerged;
byte commandQueueIndex;
bool canSendNextAtCommand = false;
String commandRequest = "";
// Structure with realtime values
typedef struct {
float batteryTotalAvailableKWh;
float speedKmh;
float odoKm;
float socPerc;
float sohPerc;
float cumulativeEnergyChargedKWh;
float cumulativeEnergyChargedKWhStart;
float cumulativeEnergyDischargedKWh;
float cumulativeEnergyDischargedKWhStart;
float batPowerAmp;
float batPowerKw;
float batPowerKwh100;
float batVoltage;
float batCellMinV;
float batCellMaxV;
float batTempC;
float batHeaterC;
float batInletC;
float batMinC;
float batMaxC;
float batModule01TempC;
float batModule02TempC;
float batModule03TempC;
float batModule04TempC;
float coolingWaterTempC;
float coolantTemp1C;
float coolantTemp2C;
float auxPerc;
float auxCurrentAmp;
float auxVoltage;
float indoorTemperature;
float outdoorTemperature;
float tireFrontLeftTempC;
float tireFrontLeftPressureBar;
float tireFrontRightTempC;
float tireFrontRightPressureBar;
float tireRearLeftTempC;
float tireRearLeftPressureBar;
float tireRearRightTempC;
float tireRearRightPressureBar;
float cellVoltage[98]; // 1..98 has index 0..97
// Screen - charging graph
float chargingGraphKw[101]; // 0..100% .. how many HW in each step
float chargingGraphMinTempC[101]; // 0..100% .. Min temp in.C
float chargingGraphMaxTempC[101]; // 0..100% .. Max temp in.C
// Screen - consumption info
float soc10ced[11]; // 0..10 (5%, 10%, 20%, 30%, 40%).. (never discharged soc% to 0)
float soc10cec[11]; // 0..10 (5%, 10%, 20%, 30%, 40%)..
float soc10odo[11]; // odo history
time_t soc10time[11]; // time for avg speed
} PARAMS_STRUC;
// Setting stored to flash
typedef struct {
byte initFlag; // 183 value
byte settingsVersion; // 1
uint16_t carType; // 0 - Kia eNiro 2020, 1 - Hyundai Kona 2020, 2 - Hyudai Ioniq 2018
char obdMacAddress[20];
char serviceUUID[40];
char charTxUUID[40];
char charRxUUID[40];
byte displayRotation; // 0 portrait, 1 landscape, 2.., 3..
char distanceUnit; // k - kilometers
char temperatureUnit; // c - celsius
char pressureUnit; // b - bar
} SETTINGS_STRUC;
PARAMS_STRUC params; // Realtime sensor values
PARAMS_STRUC oldParams; // Old states used for change detection (draw optimization)
SETTINGS_STRUC settings, tmpSettings; // Settings stored into flash
/**
Hex to dec (1-2 byte values, signed/unsigned)
For 4 byte change int to long and add part for signed numbers
*/
float hexToDec(String hexString, byte bytes = 2, bool signedNum = true) {
unsigned int decValue = 0;
unsigned int nextInt;
for (int i = 0; i < hexString.length(); i++) {
nextInt = int(hexString.charAt(i));
if (nextInt >= 48 && nextInt <= 57) nextInt = map(nextInt, 48, 57, 0, 9);
if (nextInt >= 65 && nextInt <= 70) nextInt = map(nextInt, 65, 70, 10, 15);
if (nextInt >= 97 && nextInt <= 102) nextInt = map(nextInt, 97, 102, 10, 15);
nextInt = constrain(nextInt, 0, 15);
decValue = (decValue * 16) + nextInt;
}
// Unsigned - do nothing
if (!signedNum) {
return decValue;
}
// Signed for 1, 2 bytes
if (bytes == 1) {
return (decValue > 127 ? (float)decValue - 256.0 : decValue);
}
return (decValue > 32767 ? (float)decValue - 65536.0 : decValue);
}