Files
muziekdoos/FW/leo_muziekdoos_sam51/lib/I2S/I2S.cpp
2021-08-27 16:41:58 +02:00

578 lines
17 KiB
C++

/*!
* @file Adafruit_ZeroI2S.cpp
*
* @mainpage Adafruit I2S peripheral driver for SAMD21 and SAMD51 chips
*
* @section intro_sec Introduction
*
* I2S peripheral driver for SAMD21 and SAMD51 chips
*
*
* Adafruit invests time and resources providing this open source code,
* please support Adafruit and open-source hardware by purchasing
* products from Adafruit!
*
* @section author Author
*
* Written by Dean Miller for Adafruit Industries.
*
* @section license License
*
* BSD license, all text here must be included in any redistribution.
*
*/
#include "I2S.h"
#include "wiring_private.h"
#ifndef DEBUG_PRINTLN
#define DEBUG_PRINTLN Serial.println ///< where to print the debug output
#endif
/**************************************************************************/
/*!
@brief Class Constructor
@param FS_PIN frame sync pin
@param SCK_PIN bit clock pin
@param TX_PIN data output pin
@param RX_PIN data input pin
*/
/**************************************************************************/
I2S_class::I2S_class(uint8_t FS_PIN, uint8_t SCK_PIN,
uint8_t TX_PIN, uint8_t RX_PIN)
: _fs(FS_PIN), _sck(SCK_PIN), _tx(TX_PIN), _rx(RX_PIN) {}
#if defined(PIN_I2S_SDI) && defined(PIN_I2S_SDO)
/**************************************************************************/
/*!
@brief Class Constructor with defaults
*/
/**************************************************************************/
I2S_class::I2S_class()
: _fs(PIN_I2S_FS), _sck(PIN_I2S_SCK), _tx(PIN_I2S_SDO), _rx(PIN_I2S_SDI) {}
#else
/**************************************************************************/
/*!
@brief Class Constructor with defaults
*/
/**************************************************************************/
Adafruit_ZeroI2S::Adafruit_ZeroI2S()
: _fs(PIN_I2S_FS), _sck(PIN_I2S_SCK), _tx(PIN_I2S_SD) {
_rx = -1;
}
#endif
/**************************************************************************/
/*!
@brief start up the I2S peripheral
@param width the width of each I2S frame
@param fs_freq the frame sync frequency (a.k.a. sample rate)
@param mck_mult master clock output will be fs_freq * mck_mult for chips
that have a mclk.
@returns true on success, false on any error
*/
/**************************************************************************/
bool I2S_class::begin(I2SSlotSize width, int fs_freq, int mck_mult) {
#if defined(__SAMD51__)
pinPeripheral(_fs, PIO_I2S);
pinPeripheral(_sck, PIO_I2S);
pinPeripheral(_rx, PIO_I2S);
pinPeripheral(_tx, PIO_I2S);
I2S->CTRLA.bit.ENABLE = 0;
// initialize clock control
MCLK->APBDMASK.reg |= MCLK_APBDMASK_I2S;
uint32_t mckFreq = (fs_freq * mck_mult);
uint32_t sckFreq = fs_freq * I2S_NUM_SLOTS * ((width + 1) << 3);
uint32_t gclkval = GCLK_PCHCTRL_GEN_GCLK1_Val;
uint32_t gclkFreq = VARIANT_GCLK1_FREQ;
uint8_t mckoutdiv = min((gclkFreq / mckFreq) - 1U, 63U);
uint8_t mckdiv = min((gclkFreq / sckFreq) - 1U, 63U);
if (((VARIANT_GCLK1_FREQ / mckFreq) - 1) > 63) {
gclkval = GCLK_PCHCTRL_GEN_GCLK4_Val;
gclkFreq = 12000000;
}
GCLK->PCHCTRL[I2S_GCLK_ID_0].reg = gclkval | (1 << GCLK_PCHCTRL_CHEN_Pos);
GCLK->PCHCTRL[I2S_GCLK_ID_1].reg = gclkval | (1 << GCLK_PCHCTRL_CHEN_Pos);
// software reset
I2S->CTRLA.bit.SWRST = 1;
while (I2S->SYNCBUSY.bit.SWRST || I2S->SYNCBUSY.bit.ENABLE)
; // wait for sync
// CLKCTRL[0] is used for the tx channel
I2S->CLKCTRL[0].reg =
I2S_CLKCTRL_MCKSEL_GCLK | I2S_CLKCTRL_MCKOUTDIV(mckoutdiv) |
I2S_CLKCTRL_MCKDIV(mckdiv) | I2S_CLKCTRL_SCKSEL_MCKDIV |
I2S_CLKCTRL_MCKEN | I2S_CLKCTRL_FSSEL_SCKDIV | I2S_CLKCTRL_BITDELAY_I2S |
I2S_CLKCTRL_FSWIDTH_HALF | I2S_CLKCTRL_NBSLOTS(I2S_NUM_SLOTS - 1) |
I2S_CLKCTRL_SLOTSIZE(width);
uint8_t wordSize=0;
switch (width) {
case I2S_8_BIT:
wordSize = I2S_TXCTRL_DATASIZE_8_Val;
break;
case I2S_16_BIT:
wordSize = I2S_TXCTRL_DATASIZE_16_Val;
break;
case I2S_24_BIT:
wordSize = I2S_TXCTRL_DATASIZE_24_Val;
break;
case I2S_32_BIT:
wordSize = I2S_TXCTRL_DATASIZE_32_Val;
break;
}
I2S->TXCTRL.reg = I2S_TXCTRL_DMA_SINGLE | I2S_TXCTRL_MONO_STEREO |
I2S_TXCTRL_BITREV_MSBIT | I2S_TXCTRL_EXTEND_ZERO |
I2S_TXCTRL_WORDADJ_RIGHT | I2S_TXCTRL_DATASIZE(wordSize) |
I2S_TXCTRL_TXSAME_ZERO | I2S_TXCTRL_TXDEFAULT_ZERO;
I2S->RXCTRL.reg = I2S_RXCTRL_DMA_SINGLE | I2S_RXCTRL_MONO_STEREO |
I2S_RXCTRL_BITREV_MSBIT | I2S_RXCTRL_EXTEND_ZERO |
I2S_RXCTRL_WORDADJ_RIGHT | I2S_RXCTRL_DATASIZE(wordSize) |
I2S_RXCTRL_SLOTADJ_RIGHT | I2S_RXCTRL_CLKSEL_CLK0 |
I2S_RXCTRL_SERMODE_RX;
while (I2S->SYNCBUSY.bit.ENABLE)
; // wait for sync
I2S->CTRLA.bit.ENABLE = 1;
return true;
#else // SAMD21
_i2sserializer = -1;
_i2sclock = -1;
uint32_t _clk_pin, _clk_mux, _data_pin, _data_mux, _fs_pin, _fs_mux;
// Clock pin, can only be one of 3 options
uint32_t clockport = g_APinDescription[_sck].ulPort;
uint32_t clockpin = g_APinDescription[_sck].ulPin;
if ((clockport == 0) && (clockpin == 10)) {
// PA10
_i2sclock = 0;
_clk_pin = PIN_PA10G_I2S_SCK0;
_clk_mux = MUX_PA10G_I2S_SCK0;
#if defined(PIN_PB11G_I2S_SCK1)
} else if ((clockport == 1) && (clockpin == 11)) {
// PB11
_i2sclock = 1;
_clk_pin = PIN_PB11G_I2S_SCK1;
_clk_mux = MUX_PB11G_I2S_SCK1;
#endif
#if defined(PIN_PA20G_I2S_SCK0)
} else if ((clockport == 0) && (clockpin == 20)) {
// PA20
_i2sclock = 0;
_clk_pin = PIN_PA20G_I2S_SCK0;
_clk_mux = MUX_PA20G_I2S_SCK0;
#endif
} else {
DEBUG_PRINTLN("Clock isnt on a valid pin");
return false;
}
pinPeripheral(_sck, (EPioType)_clk_mux);
// FS pin, can only be one of 2 options
uint32_t fsport = g_APinDescription[_fs].ulPort;
uint32_t fspin = g_APinDescription[_fs].ulPin;
if ((fsport == 0) && (fspin == 11)) {
// PA11
_fs_pin = PIN_PA11G_I2S_FS0;
_fs_mux = MUX_PA11G_I2S_FS0;
#if defined(PIN_PA21G_I2S_FS0)
} else if ((fsport == 0) && (fspin == 21)) {
// PA21
_fs_pin = PIN_PA21G_I2S_FS0;
_fs_mux = MUX_PA21G_I2S_FS0;
#endif
} else {
DEBUG_PRINTLN("FS isnt on a valid pin");
return false;
}
pinPeripheral(_fs, (EPioType)_fs_mux);
uint32_t i2sGCLK;
if (_i2sclock == 0)
i2sGCLK = I2S_GCLK_ID_0;
else
i2sGCLK = I2S_GCLK_ID_1;
uint32_t divider = fs_freq * 2 * (width + 1) * 8;
// configure the clock divider
while (GCLK->STATUS.bit.SYNCBUSY)
;
GCLK->GENDIV.bit.ID = I2S_CLOCK_GENERATOR;
GCLK->GENDIV.bit.DIV = SystemCoreClock / divider;
// use the DFLL as the source
while (GCLK->STATUS.bit.SYNCBUSY)
;
GCLK->GENCTRL.bit.ID = I2S_CLOCK_GENERATOR;
GCLK->GENCTRL.bit.SRC = GCLK_GENCTRL_SRC_DFLL48M_Val;
GCLK->GENCTRL.bit.IDC = 1;
GCLK->GENCTRL.bit.GENEN = 1;
// enable
while (GCLK->STATUS.bit.SYNCBUSY)
;
GCLK->CLKCTRL.bit.ID = i2sGCLK;
GCLK->CLKCTRL.bit.GEN = I2S_CLOCK_GENERATOR;
GCLK->CLKCTRL.bit.CLKEN = 1;
while (GCLK->STATUS.bit.SYNCBUSY)
;
// Data pin, can only be one of 3 options
uint32_t datapin = g_APinDescription[_tx].ulPin;
uint32_t dataport = g_APinDescription[_tx].ulPort;
if ((dataport == 0) && (datapin == 7)) {
// PA07
_i2sserializer = 0;
_data_pin = PIN_PA07G_I2S_SD0;
_data_mux = MUX_PA07G_I2S_SD0;
} else if ((dataport == 0) && (datapin == 8)) {
// PA08
_i2sserializer = 1;
_data_pin = PIN_PA08G_I2S_SD1;
_data_mux = MUX_PA08G_I2S_SD1;
} else if ((dataport == 0) && (datapin == 19)) {
// PA19
_i2sserializer = 0;
_data_pin = PIN_PA19G_I2S_SD0;
_data_mux = MUX_PA19G_I2S_SD0;
} else {
DEBUG_PRINTLN("Data isnt on a valid pin");
return false;
}
pinPeripheral(_tx, (EPioType)_data_mux);
PM->APBCMASK.reg |= PM_APBCMASK_I2S;
I2S->CTRLA.bit.ENABLE = 0;
while (I2S->SYNCBUSY.bit.ENABLE)
;
if (_i2sclock == 0)
I2S->CTRLA.bit.CKEN0 = 0;
else
I2S->CTRLA.bit.CKEN1 = 0;
while (I2S->SYNCBUSY.bit.CKEN0 || I2S->SYNCBUSY.bit.CKEN1)
;
I2S->CLKCTRL[_i2sclock].reg =
I2S_CLKCTRL_MCKSEL_GCLK | I2S_CLKCTRL_SCKSEL_MCKDIV |
I2S_CLKCTRL_FSSEL_SCKDIV | I2S_CLKCTRL_BITDELAY_I2S |
I2S_CLKCTRL_NBSLOTS(I2S_NUM_SLOTS - 1) | I2S_CLKCTRL_SLOTSIZE(width);
uint8_t wordSize;
switch (width) {
case I2S_8_BIT:
wordSize = I2S_SERCTRL_DATASIZE_8_Val;
break;
case I2S_16_BIT:
wordSize = I2S_SERCTRL_DATASIZE_16_Val;
break;
case I2S_24_BIT:
wordSize = I2S_SERCTRL_DATASIZE_24_Val;
break;
case I2S_32_BIT:
wordSize = I2S_SERCTRL_DATASIZE_32_Val;
break;
default:
DEBUG_PRINTLN("invalid width!");
return false;
}
if (_i2sserializer == 0)
I2S->CTRLA.bit.SEREN0 = 0;
else
I2S->CTRLA.bit.SEREN1 = 0;
while (I2S->SYNCBUSY.bit.SEREN0 || I2S->SYNCBUSY.bit.SEREN1)
;
I2S->SERCTRL[_i2sserializer].reg =
I2S_SERCTRL_DMA_SINGLE | I2S_SERCTRL_MONO_STEREO |
I2S_SERCTRL_BITREV_MSBIT | I2S_SERCTRL_EXTEND_ZERO |
I2S_SERCTRL_WORDADJ_RIGHT | I2S_SERCTRL_DATASIZE(wordSize) |
I2S_SERCTRL_SLOTADJ_RIGHT |
((uint32_t)_i2sclock << I2S_SERCTRL_CLKSEL_Pos);
return true;
#endif
}
/**************************************************************************/
/*!
@brief enable data output. Note that on SAMD21 chips either rx or tx can be
enabled on an Adafruit_ZeroI2S instance, while on SAMD51 the same
Adafruit_ZeroI2S instance can have both rx and tx channels enabled.
*/
/**************************************************************************/
void I2S_class::enableTx() {
#if defined(__SAMD51__)
I2S->CTRLA.bit.CKEN0 = 1;
while (I2S->SYNCBUSY.bit.CKEN0)
;
I2S->CTRLA.bit.TXEN = 1;
while (I2S->SYNCBUSY.bit.TXEN)
;
#else
if (_i2sserializer > -1 && _i2sclock > -1) {
I2S->CTRLA.bit.ENABLE = 0;
while (I2S->SYNCBUSY.bit.ENABLE)
;
I2S->SERCTRL[_i2sserializer].bit.SERMODE = I2S_SERCTRL_SERMODE_TX;
if (_i2sserializer == 0)
I2S->CTRLA.bit.SEREN0 = 1;
else
I2S->CTRLA.bit.SEREN1 = 1;
if (_i2sclock == 0)
I2S->CTRLA.bit.CKEN0 = 1;
else
I2S->CTRLA.bit.CKEN1 = 1;
I2S->CTRLA.bit.ENABLE = 1;
while (I2S->SYNCBUSY.bit.ENABLE || I2S->SYNCBUSY.bit.CKEN0 ||
I2S->SYNCBUSY.bit.CKEN1 || I2S->SYNCBUSY.bit.SEREN0 ||
I2S->SYNCBUSY.bit.SEREN1)
;
}
#endif
}
/**************************************************************************/
/*!
@brief disable data output
*/
/**************************************************************************/
void I2S_class::disableTx() {
#if defined(__SAMD51__)
I2S->CTRLA.bit.TXEN = 0;
while (I2S->SYNCBUSY.bit.TXEN)
;
#else
#endif
}
/**************************************************************************/
/*!
@brief enable data input. Note that on SAMD21 chips either rx or tx can be
enabled on an Adafruit_ZeroI2S instance, while on SAMD51 the same
Adafruit_ZeroI2S instance can have both rx and tx channels enabled.
*/
/**************************************************************************/
void I2S_class::enableRx() {
#if defined(__SAMD51__)
I2S->CTRLA.bit.CKEN0 = 1;
while (I2S->SYNCBUSY.bit.CKEN0)
;
I2S->CTRLA.bit.RXEN = 1;
while (I2S->SYNCBUSY.bit.RXEN)
;
#else
if (_i2sserializer > -1 && _i2sclock > -1) {
I2S->CTRLA.bit.ENABLE = 0;
while (I2S->SYNCBUSY.bit.ENABLE)
;
I2S->SERCTRL[_i2sserializer].bit.SERMODE = I2S_SERCTRL_SERMODE_RX;
if (_i2sserializer == 0)
I2S->CTRLA.bit.SEREN0 = 1;
else
I2S->CTRLA.bit.SEREN1 = 1;
if (_i2sclock == 0)
I2S->CTRLA.bit.CKEN0 = 1;
else
I2S->CTRLA.bit.CKEN1 = 1;
I2S->CTRLA.bit.ENABLE = 1;
while (I2S->SYNCBUSY.bit.ENABLE || I2S->SYNCBUSY.bit.CKEN0 ||
I2S->SYNCBUSY.bit.CKEN1 || I2S->SYNCBUSY.bit.SEREN0 ||
I2S->SYNCBUSY.bit.SEREN1)
;
}
#endif
}
/**************************************************************************/
/*!
@brief disable data input
*/
/**************************************************************************/
void I2S_class::disableRx() {
#if defined(__SAMD51__)
I2S->CTRLA.bit.RXEN = 0;
while (I2S->SYNCBUSY.bit.RXEN)
;
#else
#endif
}
/**************************************************************************/
/*!
@brief enable master clock output on devices that have a master clock
output.
*/
/**************************************************************************/
void I2S_class::enableMCLK() {
#ifdef PIN_I2S_MCK
pinPeripheral(PIN_I2S_MCK, PIO_I2S);
#endif
}
/**************************************************************************/
/*!
@brief disable master clock output on devices that have a master clock
output.
*/
/**************************************************************************/
void I2S_class::disableMCLK() {
#ifdef PIN_I2S_MCK
pinMode(PIN_I2S_MCK, INPUT);
#endif
}
/**************************************************************************/
/*!
@brief check if data can be written to the TX data register
@returns true if data can be written, false otherwise
*/
/**************************************************************************/
bool I2S_class::txReady() {
#if defined(__SAMD51__)
return !((!I2S->INTFLAG.bit.TXRDY0) || I2S->SYNCBUSY.bit.TXDATA);
#else
if (_i2sserializer > -1) {
if (_i2sserializer == 0) {
return !((!I2S->INTFLAG.bit.TXRDY0) || I2S->SYNCBUSY.bit.DATA0);
} else {
return !((!I2S->INTFLAG.bit.TXRDY1) || I2S->SYNCBUSY.bit.DATA1);
}
} else
return false;
#endif
}
/**************************************************************************/
/*!
@brief check if data is available to be read from the RX data register
@returns true if data is available, false otherwise
*/
/**************************************************************************/
bool I2S_class::rxReady() {
#if defined(__SAMD51__)
return !((!I2S->INTFLAG.bit.RXRDY0) || I2S->SYNCBUSY.bit.RXDATA);
#else
if (_i2sserializer > -1) {
if (_i2sserializer == 0) {
return !((!I2S->INTFLAG.bit.RXRDY0) || I2S->SYNCBUSY.bit.DATA0);
} else {
return !((!I2S->INTFLAG.bit.RXRDY1) || I2S->SYNCBUSY.bit.DATA1);
}
} else
return false;
#endif
}
/**************************************************************************/
/*!
@brief perform a blocking write to the I2S peripheral. This function will
only return once all data has been sent.
@param left the left channel data
@param right the right channel data
*/
/**************************************************************************/
void I2S_class::write(int32_t left, int32_t right) {
#if defined(__SAMD51__)
while ((!I2S->INTFLAG.bit.TXRDY0) || I2S->SYNCBUSY.bit.TXDATA)
;
I2S->INTFLAG.bit.TXUR0 = 1;
I2S->TXDATA.reg = left;
while ((!I2S->INTFLAG.bit.TXRDY0) || I2S->SYNCBUSY.bit.TXDATA)
;
I2S->INTFLAG.bit.TXUR0 = 1;
I2S->TXDATA.reg = right;
#else
if (_i2sserializer > -1) {
if (_i2sserializer == 0) {
while ((!I2S->INTFLAG.bit.TXRDY0) || I2S->SYNCBUSY.bit.DATA0)
;
I2S->INTFLAG.bit.TXUR0 = 1;
I2S->DATA[0].reg = left;
while ((!I2S->INTFLAG.bit.TXRDY0) || I2S->SYNCBUSY.bit.DATA0)
;
I2S->INTFLAG.bit.TXUR0 = 1;
I2S->DATA[0].reg = right;
} else {
while ((!I2S->INTFLAG.bit.TXRDY1) || I2S->SYNCBUSY.bit.DATA1)
;
I2S->INTFLAG.bit.TXUR1 = 1;
I2S->DATA[1].reg = left;
while ((!I2S->INTFLAG.bit.TXRDY1) || I2S->SYNCBUSY.bit.DATA1)
;
I2S->INTFLAG.bit.TXUR1 = 1;
I2S->DATA[1].reg = right;
}
}
#endif
}
/**************************************************************************/
/*!
@brief perform a blocking read to the I2S peripheral. This function will
only return once all data has been read.
@param left pointer to where the left channel data will be written
@param right pointer to where the right channel data will be written
*/
/**************************************************************************/
void I2S_class::read(int32_t *left, int32_t *right) {
#if defined(__SAMD51__)
while ((!I2S->INTFLAG.bit.RXRDY0) || I2S->SYNCBUSY.bit.RXDATA)
;
*left = I2S->RXDATA.reg;
while ((!I2S->INTFLAG.bit.RXRDY0) || I2S->SYNCBUSY.bit.RXDATA)
;
*right = I2S->RXDATA.reg;
#else
if (_i2sserializer > -1) {
if (_i2sserializer == 0) {
while ((!I2S->INTFLAG.bit.RXRDY0) || I2S->SYNCBUSY.bit.DATA0)
;
*left = I2S->DATA[0].reg;
while ((!I2S->INTFLAG.bit.RXRDY0) || I2S->SYNCBUSY.bit.DATA0)
;
*right = I2S->DATA[0].reg;
} else {
while ((!I2S->INTFLAG.bit.RXRDY1) || I2S->SYNCBUSY.bit.DATA1)
;
*left = I2S->DATA[1].reg;
while ((!I2S->INTFLAG.bit.RXRDY1) || I2S->SYNCBUSY.bit.DATA1)
;
*right = I2S->DATA[1].reg;
}
}
#endif
}