#include "arduino.h" #include "power.h" #include "hal.h" #include #include #include "display.h" #if (ENVIRONMENT == TTGO_T18) #define VOLTAGE_DIVIDER 2 // ttgo has 100/100k voltage divider so need to reverse that reduction via (220k+100k)/100k on vbat GPIO37 or ADC1_1 (early revs were GPIO13 or ADC2_4 but do NOT use with WiFi.begin()) #define VOLTAGEREF 3787 // measured 2,0474 / 2214 ticks (mv) #define VOLTAGEADC 0.9245 #else #define VOLTAGE_DIVIDER 2.08 // Lora has 220k/100k voltage divider so need to reverse that reduction via (220k+100k)/100k on vbat GPIO37 or ADC1_1 (early revs were GPIO13 or ADC2_4 but do NOT use with WiFi.begin()) #endif #define DEFAULT_VREF 1100 // Default VREF use if no e-fuse calibration #define VBATT_SAMPLE 500 // Battery sample rate in ms #define VBATT_SMOOTH 20 // Number of averages in sample #define ADC_READ_STABILIZE 50 // in ms (delay from GPIO control and ADC connections times) #define LO_BATT_SLEEP_TIME 10 * 60 * 1000 * 1000 // How long when low batt to stay in sleep (us) #define __DEBUG 0 // DEBUG Serial output uint16_t Sample(); esp_adc_cal_characteristics_t *adc_chars; uint16_t voltage = 666; void powerInit(void) { #if (ENVIRONMENT == HELTECv21) adc_chars = (esp_adc_cal_characteristics_t *)calloc(1, sizeof(esp_adc_cal_characteristics_t)); esp_adc_cal_value_t val_type = esp_adc_cal_characterize(ADC_UNIT_1, ADC_ATTEN_DB_6, ADC_WIDTH_BIT_12, DEFAULT_VREF, adc_chars); adc1_config_width(ADC_WIDTH_BIT_12); adc1_config_channel_atten(VBATT, ADC_ATTEN_DB_6); #elif (ENVIRONMENT == TTGO_T18) //nothing adc_chars = (esp_adc_cal_characteristics_t *)calloc(1, sizeof(esp_adc_cal_characteristics_t)); esp_adc_cal_value_t val_type = esp_adc_cal_characterize(ADC_UNIT_1, ADC_ATTEN_DB_6, ADC_WIDTH_BIT_12, DEFAULT_VREF, adc_chars); adc1_config_channel_atten(VBATT, ADC_ATTEN_DB_6); #else // Use this for older V2.0 with VBatt reading wired to GPIO13 adc_chars = (esp_adc_cal_characteristics_t *)calloc(1, sizeof(esp_adc_cal_characteristics_t)); esp_adc_cal_value_t val_type = esp_adc_cal_characterize(ADC_UNIT_2, ADC_ATTEN_DB_6, ADC_WIDTH_BIT_12, DEFAULT_VREF, adc_chars); adc2_config_channel_atten(VBATT, ADC_ATTEN_DB_6); #endif if (val_type) ; // Suppress warning Serial.printf("ADC Calibration: "); if (val_type == ESP_ADC_CAL_VAL_EFUSE_VREF) { Serial.printf("eFuse Vref\n"); } else if (val_type == ESP_ADC_CAL_VAL_EFUSE_TP) { Serial.printf("Two Point\n"); } else { Serial.printf("Default[%dmV]\n", DEFAULT_VREF); } Serial.println("Power init: ADC done"); // Prime the Sample register for (uint8_t i = 0; i < VBATT_SMOOTH; i++) { Sample(); } Serial.println("Power init: buffer done"); pinMode(VEXT, OUTPUT); //digitalWrite(VEXT, LOW); // ESP32 Lora v2.1 reads on GPIO37 when GPIO21 is low //delay(ADC_READ_STABILIZE); // let GPIO stabilize Serial.println("Power init done"); displayWriteLine("Power Init Done"); } uint16_t powerGetVbatt(void) { return voltage; } void powerHandler(void) { voltage = Sample(); //displayDrawBatt(voltage, voltage < LIGHT_SLEEP_VOLTAGE); if (voltage < MINBATT) { // Low Voltage cut off shut down to protect battery as long as possible displayDrawShutdown(); delay(2000); #if defined(__DEBUG) && __DEBUG > 0 Serial.printf(" !! Shutting down...low battery volotage: %dmV.\n", voltage); delay(10); #endif esp_sleep_enable_timer_wakeup(LO_BATT_SLEEP_TIME); esp_deep_sleep_start(); } else if (voltage < LIGHT_SLEEP_VOLTAGE) { // Use light sleep once on battery uint64_t s = VBATT_SAMPLE; #if defined(__DEBUG) && __DEBUG > 0 Serial.printf(" - Light Sleep (%dms)...battery volotage: %dmV.\n", (int)s, voltage); delay(20); #endif esp_sleep_enable_timer_wakeup(s * 1000); // Light Sleep does not flush buffer esp_light_sleep_start(); } delay(ADC_READ_STABILIZE); } // Heltec WiFi LoRa V2 battery read example // by Jeff McClain jeff@themcclains.net // // Poll the proper ADC for VBatt on Heltec Lora 32 with GPIO21 toggled uint16_t ReadVBatt() { //Serial.println("start read batt"); //int reading = 666; uint16_t rawVoltage; #if (defined(HELTEC_V2_1)) digitalWrite(VEXT, LOW); // ESP32 Lora v2.1 reads on GPIO37 when GPIO21 is low delay(ADC_READ_STABILIZE); // let GPIO stabilize pinMode(VBATT, OPEN_DRAIN); // ADC GPIO37 reading = adc1_get_raw(VBATT); pinMode(VBATT, INPUT); // Disconnect ADC before GPIO goes back high so we protect ADC from direct connect to VBATT (i.e. no divider) uint16_t rawVoltage = esp_adc_cal_raw_to_voltage(reading, adc_chars); #elif (ENVIRONMENT == TTGO_T18) pinMode(VBATT, ANALOG); // ADC GPIO13 rawVoltage = analogRead(35) * VOLTAGEADC; //Serial.printf("battery analogread = %i\n", reading); //Serial.printf("raw voltage = %i\n", rawVoltage); pinMode(VBATT, INPUT); // Disconnect ADC before GPIO goes back high so we protect ADC from direct connect to VBATT (i.e. no divider #elif (ENVIRONMENT == LOLIN32) digitalWrite(VEXT, LOW); // ESP32 Lora v2.1 reads on GPIO37 when GPIO21 is low delay(ADC_READ_STABILIZE); // let GPIO stabilize pinMode(VBATT, OPEN_DRAIN); // ADC GPIO13 adc2_get_raw(VBATT, ADC_WIDTH_BIT_12, &reading); pinMode(VBATT, INPUT); // Disconnect ADC before GPIO goes back high so we protect ADC from direct connect to VBATT (i.e. no divider rawVoltage = esp_adc_cal_raw_to_voltage(reading, adc_chars); #endif //Serial.printf("battery rawvoltage = %i\n", rawVoltage); rawVoltage *= VOLTAGE_DIVIDER; //Serial.printf("battery voltage = %4.2f\n", rawVoltage/1000); //digitalWrite(VEXT, HIGH); // ESP32 Lora v2.1 reads on GPIO37 when GPIO21 is low return rawVoltage; } // Use a buffer to average/sample ADC uint16_t Sample() { static uint8_t i = 0; static uint16_t samp[VBATT_SMOOTH]; static int32_t t = 0; static bool f = true; if (f) { for (uint8_t c = 0; c < VBATT_SMOOTH; c++) { samp[c] = 0; } f = false; } // Initialize the sample array first time t -= samp[i]; // doing a rolling recording, so remove the old rolled around value out of total and get ready to put new one in. if (t < 0) { t = 0; } // ADC read samp[i] = ReadVBatt(); //Serial.printf("ADC Raw Reading[%d]: %d", i, voltage); t += samp[i]; if (++i >= VBATT_SMOOTH) { i = 0; } uint16_t s = round(((float)t / (float)VBATT_SMOOTH)); Serial.printf("Vbatt = %4.3f Volt\n", (double(s)/1000)); return s; }