In addition to the clock scene, both the animation scene and the weather scene should now work under MicroPython on devices with 520kBytes of RAM (e.g. LoPy 1, WiPy 2) after: - combating heap fragmentation during initialization by temporarily allocating a large chunk of RAM in the beginning of main.py and freeing it after all modules have been imported and initialized - stream parsing the JSON response from the weather API - converting animations to binary and streaming them from the flash file system (additionally, older ESP8266 modules with 4MB flash have been found working under some circumstances with MicroPython 1.9.4 and an 8x8 LED matrix) - 3D parts: add diffuser grid and frame for square LED matrix displays - Arduino projects needs to be in a folder with the same name as the .ino file - config: allow multiple WiFi networks to be configured - config: add support for debug flags - config: add intensity configuration - HAL: unify serial input processing for Arduino and Pycom devices - HAL: handle UART write failures on Pycom devices - HAL: drop garbage collection from .update_display() because it takes several hundred milliseconds on 4MB devices - MCU: clear display when enabling/disabling MCU independence from host - PixelFont: move data to class attributes to reduce memory usage - PixelFont: add more characters - PixelFont: move data generation to scripts/generate-pixelfont.py - LedMatrix: support LED matrixes with strides other than 8 (e.g. as 16x16 matrices) - LedMatrix: add method to render text - LedMatrix: let consumers handle brightness themselves - AnimationScene: MicroPython does not implement bytearray.find - AnimationScene: ensure minimum on-screen time - BootScene: wifi connection and RTC sync progress for Pycom devices - ClockScene: delete unused code, switch to generic text rendering method - FireScene: classical fire effect - WeatherScene: bug fixes, switch to generic text rendering method - WeatherScene: ensure minimum on-screen time - WeatherScene: use custom JSON parsing to reduce memory usage
299 lines
9.1 KiB
Python
Executable File
299 lines
9.1 KiB
Python
Executable File
#!/usr/bin/env python
|
|
#
|
|
# This file is running on the MCU and implements the following features:
|
|
# - the serial protocol used to control the MCU from a host computer
|
|
# - low-level LED matrix routines (initialization, put pixel, ..)
|
|
# - configuration of the real-time clock
|
|
# - shutdown/power-up of the host computer (via GPIO)
|
|
#
|
|
# This file is similar to the Arduino C version running on Teensy.
|
|
#
|
|
# From https://raw.githubusercontent.com/Gadgetoid/wipy-WS2812/master/ws2812alt.py
|
|
# ..via: https://forum.pycom.io/topic/2214/driving-ws2812-neopixel-led-strip/3
|
|
from ws2812 import WS2812
|
|
from machine import Pin, RTC, UART
|
|
import utime
|
|
import os
|
|
import sys
|
|
import pycom
|
|
import gc
|
|
|
|
class PycomHAL:
|
|
def __init__(self, config):
|
|
self.chain = None # will be initialized in reset()
|
|
self.num_pixels = 256
|
|
self.reset()
|
|
self.enable_auto_time = True
|
|
# A Raspberry Pi will reboot/wake up if this pin is set low
|
|
# https://docs.pycom.io/firmwareapi/pycom/machine/pin.html#pinholdhold
|
|
self.suspend_host_pin = Pin('P8', Pin.OUT, Pin.PULL_UP)
|
|
self.suspend_host_pin.hold(True)
|
|
# Handle button input
|
|
self.left_button = Pin('P9', Pin.IN, Pin.PULL_UP)
|
|
self.left_button.callback(Pin.IRQ_FALLING|Pin.IRQ_RISING, handler=lambda arg: self.button_irq(arg))
|
|
self.right_button = Pin('P10', Pin.IN, Pin.PULL_UP)
|
|
self.right_button.callback(Pin.IRQ_FALLING|Pin.IRQ_RISING, handler=lambda arg: self.button_irq(arg))
|
|
print('PycomHAL: left button {}, right button {}'.format(self.left_button.value(), self.right_button.value()))
|
|
self.button_state = 0
|
|
self.button_down_t = 0
|
|
# Setup RTC
|
|
self.rtc = None
|
|
utime.timezone(config['tzOffsetSeconds'])
|
|
pycom.heartbeat(False)
|
|
# Free resources
|
|
if self.left_button.value() and self.right_button.value():
|
|
self.disable_stuff()
|
|
|
|
# For the serial bridge implementation
|
|
self.uart = None
|
|
self.console = None
|
|
gc.collect()
|
|
self.rxbuf = bytearray(256)
|
|
self.reconfigure_uarts(config)
|
|
# Needed for maintaining the serial protocol state
|
|
self.reboot_at = 0
|
|
self.state = 0
|
|
self.acc = 0
|
|
self.color = 0
|
|
gc.collect()
|
|
|
|
def disable_stuff(self):
|
|
from network import Bluetooth, Server
|
|
bluetooth = Bluetooth()
|
|
bluetooth.deinit()
|
|
# Disable FTP server unless button is pressed during startup
|
|
server = Server()
|
|
server.deinit()
|
|
print('PycomHAL: FTP server disabled (hold any button during startup to enable)')
|
|
|
|
def reconfigure_uarts(self, config):
|
|
"""
|
|
Reconfigure UARTs to make
|
|
- UART 0 become the one we can be controlled by via USB serial
|
|
- UART 1 the console (print output and REPL)
|
|
"""
|
|
self.uart = UART(0, config['baudrate'], pins=('P1', 'P0', 'P20', 'P19')) # TX/RX/RTS/CTS on ExpBoard2
|
|
self.console = UART(1, 115200)
|
|
if not config or not 'remapConsole' in config or config['remapConsole']:
|
|
print('HAL: Disabling REPL on UART0 and switching to serial protocol')
|
|
os.dupterm(self.console)
|
|
print('HAL: Enabled REPL on UART1')
|
|
|
|
def button_irq(self, pin):
|
|
"""
|
|
Interrrupt handler for button input pin
|
|
"""
|
|
level = pin.value()
|
|
if not level:
|
|
self.button_down_t = utime.ticks_ms()
|
|
return
|
|
if not self.button_down_t:
|
|
return
|
|
|
|
t = utime.ticks_ms() - self.button_down_t
|
|
shift = 0 if pin == self.left_button else 4
|
|
if t > 1500:
|
|
self.button_state |= 1<<(shift+2)
|
|
elif t > 500:
|
|
self.button_state |= 1<<(shift+1)
|
|
elif t > 80:
|
|
self.button_state |= 1<<(shift+0)
|
|
self.button_down_t = 0
|
|
|
|
# Implement the serial protocol understood by ArduinoSerialHAL
|
|
# This function should be similar to the Arduino project's loop()
|
|
def process_input(self):
|
|
"""
|
|
Process control messages coming from the host as well as any
|
|
button presses captured. Return button presses as input to
|
|
the caller (the main game loop).
|
|
Also takes care of waking up the host computer if the timer expired.
|
|
"""
|
|
# Wake up the host computer if necessary
|
|
if self.reboot_at:
|
|
if utime.time() > self.reboot_at:
|
|
self.reboot_at = 0
|
|
# Trigger wakeup
|
|
print('HAL: Waking up host computer')
|
|
self.suspend_host_pin.hold(False)
|
|
self.suspend_host_pin(0)
|
|
self.suspend_host_pin(1)
|
|
self.suspend_host_pin.hold(True)
|
|
|
|
# Process button input
|
|
button_state = self.button_state
|
|
if button_state:
|
|
try:
|
|
if button_state & 1:
|
|
# Notify the host about the button press in a similar manner
|
|
# to what ArduinoSer2FastLED does
|
|
self.uart.write(bytearray('LEFTB_SHRT_PRESS\n'))
|
|
elif button_state & 2:
|
|
self.uart.write(bytearray('LEFTB_LONG_PRESS\n'))
|
|
elif button_state & 4:
|
|
self.uart.write(bytearray('LEFTB_HOLD_PRESS\n'))
|
|
elif button_state & 16:
|
|
self.uart.write(bytearray('RGHTB_SHRT_PRESS\n'))
|
|
elif button_state & 32:
|
|
self.uart.write(bytearray('RGHTB_LONG_PRESS\n'))
|
|
elif button_state & 64:
|
|
self.uart.write(bytearray('RGHTB_HOLD_PRESS\n'))
|
|
except OSError as e:
|
|
print('HAL: UART write failed: {}'.format(e.args[0]))
|
|
self.button_state = 0
|
|
|
|
avail = self.uart.any()
|
|
if not avail:
|
|
# No incoming data from the host, return the button state to the
|
|
# caller (game loop) so it can process it if self.enable_auto_time
|
|
# is True
|
|
return button_state
|
|
|
|
if avail > 256:
|
|
# Currently shipping releases have a 512 byte buffer
|
|
print('HAL: More than 256 bytes available: {}'.format(avail))
|
|
|
|
self.uart.readinto(self.rxbuf)
|
|
for val in self.rxbuf:
|
|
if self.state == 0:
|
|
if not val:
|
|
# Host is trying to resynchronize
|
|
self.uart.write(bytearray('RESET\n'))
|
|
print('HAL: Reset sequence from host detected or out-of-sync')
|
|
self.state = val
|
|
elif self.state >= ord('i') and self.state <= ord('i')+1:
|
|
# init display
|
|
tmp = self.state - ord('i')
|
|
self.state += 1 # next state
|
|
if tmp == 0:
|
|
self.acc = val
|
|
elif tmp == 1:
|
|
self.acc += val << 8
|
|
self.init_display(self.acc)
|
|
self.state = 0 # reset state
|
|
elif self.state == ord('c'):
|
|
# clear display
|
|
self.clear_display()
|
|
self.state = 0 # reset state
|
|
elif self.state == ord('s'):
|
|
# show display
|
|
self.update_display(self.num_pixels)
|
|
self.state = 0 # reset state
|
|
elif self.state >= ord('l') and self.state <= ord('l')+5:
|
|
# put pixel
|
|
tmp = self.state - ord('l')
|
|
self.state += 1 # next state
|
|
if tmp == 0:
|
|
self.acc = val
|
|
elif tmp == 1:
|
|
self.acc += val << 8
|
|
elif tmp == 2:
|
|
self.color = val
|
|
elif tmp == 3:
|
|
self.color += val << 8
|
|
elif tmp == 4:
|
|
self.color += val << 16
|
|
c = self.color
|
|
self.put_pixel(self.acc, (c >> 0) & 0xff, (c >> 8) & 0xff, (c >> 16) & 0xff)
|
|
self.state = 0 # reset state
|
|
elif self.state >= ord('S') and self.state <= ord('S')+1:
|
|
# suspend host
|
|
tmp = self.state - ord('S')
|
|
self.state += 1 # next state
|
|
if tmp == 0:
|
|
self.acc = val
|
|
else:
|
|
self.acc += val << 8
|
|
self.reboot_at = int(utime.time()) + self.acc
|
|
# TODO: flip pin to reboot host
|
|
self.state = 0 # reset state
|
|
elif self.state == ord('t'):
|
|
# automatic rendering of current time
|
|
if val == 10 or val == 13:
|
|
self.set_auto_time(not self.enable_auto_time)
|
|
else:
|
|
self.set_auto_time(bool(val))
|
|
self.clear_display()
|
|
print('HAL: Automatic rendering of time is now: {}'.format(self.enable_auto_time))
|
|
self.state = 0 # reset state
|
|
elif self.state >= ord('@') and self.state <= ord('@')+3:
|
|
# update RTC
|
|
tmp = self.state - ord('@')
|
|
self.state += 1 # next state
|
|
if tmp == 0:
|
|
self.acc += val
|
|
elif tmp == 1:
|
|
self.acc += val << 8
|
|
elif tmp == 2:
|
|
self.acc += val << 16
|
|
if tmp == 3:
|
|
self.acc += val << 24
|
|
self.set_rtc(self.acc)
|
|
self.state = 0 # reset state
|
|
else:
|
|
print('HAL: Unhandled state: {}'.format(self.state))
|
|
self.state = 0 # reset state
|
|
return button_state
|
|
|
|
def reset(self):
|
|
print('HAL: Reset called')
|
|
self.chain = WS2812(ledNumber=self.num_pixels)
|
|
gc.collect()
|
|
|
|
def init_display(self, num_pixels=256):
|
|
print('HAL: Initializing display with {} pixels'.format(num_pixels))
|
|
self.num_pixels = num_pixels
|
|
self.chain.clear()
|
|
self.chain.send_buf()
|
|
|
|
def clear_display(self):
|
|
"""
|
|
Turn off all pixels
|
|
"""
|
|
self.chain.clear()
|
|
self.update_display(self.num_pixels)
|
|
|
|
def update_display(self, num_modified_pixels):
|
|
if not num_modified_pixels:
|
|
return
|
|
self.chain.send_buf()
|
|
|
|
def put_pixel(self, addr, r, g, b):
|
|
"""
|
|
Update pixel in buffer
|
|
"""
|
|
self.chain.put_pixel(addr % self.num_pixels, r, g, b)
|
|
|
|
def set_rtc(self, scene):
|
|
# Resynchronize RTC
|
|
self.rtc = RTC()
|
|
self.rtc.ntp_sync('ntps1-1.eecsit.tu-berlin.de')
|
|
print('HAL: Waiting for NTP sync')
|
|
if type(scene) != int:
|
|
# Kludge: render RTC sync progress
|
|
frame = 0
|
|
while not self.rtc.synced():
|
|
scene.render(frame, 0, 0)
|
|
frame += 1
|
|
print('HAL: RTC synched')
|
|
|
|
def set_auto_time(self, enable=True):
|
|
"""
|
|
Enable rendering of current time without involvment from host computer
|
|
"""
|
|
self.enable_auto_time = enable
|
|
gc.collect()
|
|
|
|
def suspend_host(self, restart_timeout_seconds):
|
|
"""
|
|
Suspend host computer and configure a future wakeup time
|
|
"""
|
|
if restart_timeout_seconds < 15:
|
|
return
|
|
self.reboot_at = utime.time() + restart_timeout_seconds
|
|
# Trigger shutdown
|
|
self.suspend_host_pin.hold(False)
|
|
self.suspend_host_pin(0)
|
|
self.suspend_host_pin(1)
|
|
self.suspend_host_pin.hold(True)
|