This commit is contained in:
2024-03-17 21:08:41 +01:00
parent f979f805e7
commit 627f3d8f5c
20 changed files with 431 additions and 67562 deletions

Binary file not shown.

After

Width:  |  Height:  |  Size: 55 KiB

BIN
SCH/datasheet/drv8871.pdf Normal file

Binary file not shown.

Binary file not shown.

Before

Width:  |  Height:  |  Size: 1005 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 308 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 247 KiB

File diff suppressed because it is too large Load Diff

File diff suppressed because it is too large Load Diff

Binary file not shown.

After

Width:  |  Height:  |  Size: 84 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 224 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 230 KiB

View File

@@ -0,0 +1,18 @@
DC12V 25GA370 Grote Koppel Speed Reductormotorgroep met Toerenteller Encoder
Specificatie:
Voltage: DC6V 12V 24V
Onbelast Toerental: 12RPM, 16RPM, 35RPM, 60RPM, 77RPM, 130RPM, 170RPM, 280RPM, 620RPM, 1360RPM
Fout: ± 5%
Motor Diameter: 24.5mm
Motor Lichaam Lengte: 40mm(ref)
Uitgaande As Diameter: 4mm(D-type)
Uitgaande As Lengte: ongeveer 9.5mm
Versnellingsbak Diameter: 25mm
Versnellingsbak Size Detal, zie de tabel
Bedradingen:
Rode Draad-positieve voeding van motor(+)(veranderen positieve en negatieve van motor de rotatie zal veranderen)
Witte Draad-negatieve voeding van motor(-)(veranderen positieve en negatieve van motor de rotatie zal veranderen))
Gele Draad-signaal feedback (motor een turn heeft 11 signalen)
Groene Draad-signaal feedback (motor een turn heeft 11 signalen)
Blauwe Draad-positieve van encoder voeding (+)(3.3-5V), kan niet worden verkeerde
Zwarte Draad-negatieve van encoder voeding (-)(3.3-5V), kan niet worden verkeerde

5
blinds/.gitignore vendored Normal file
View File

@@ -0,0 +1,5 @@
.pio
.vscode/.browse.c_cpp.db*
.vscode/c_cpp_properties.json
.vscode/launch.json
.vscode/ipch

39
blinds/include/README Normal file
View File

@@ -0,0 +1,39 @@
This directory is intended for project header files.
A header file is a file containing C declarations and macro definitions
to be shared between several project source files. You request the use of a
header file in your project source file (C, C++, etc) located in `src` folder
by including it, with the C preprocessing directive `#include'.
```src/main.c
#include "header.h"
int main (void)
{
...
}
```
Including a header file produces the same results as copying the header file
into each source file that needs it. Such copying would be time-consuming
and error-prone. With a header file, the related declarations appear
in only one place. If they need to be changed, they can be changed in one
place, and programs that include the header file will automatically use the
new version when next recompiled. The header file eliminates the labor of
finding and changing all the copies as well as the risk that a failure to
find one copy will result in inconsistencies within a program.
In C, the usual convention is to give header files names that end with `.h'.
It is most portable to use only letters, digits, dashes, and underscores in
header file names, and at most one dot.
Read more about using header files in official GCC documentation:
* Include Syntax
* Include Operation
* Once-Only Headers
* Computed Includes
https://gcc.gnu.org/onlinedocs/cpp/Header-Files.html

46
blinds/lib/README Normal file
View File

@@ -0,0 +1,46 @@
This directory is intended for project specific (private) libraries.
PlatformIO will compile them to static libraries and link into executable file.
The source code of each library should be placed in a an own separate directory
("lib/your_library_name/[here are source files]").
For example, see a structure of the following two libraries `Foo` and `Bar`:
|--lib
| |
| |--Bar
| | |--docs
| | |--examples
| | |--src
| | |- Bar.c
| | |- Bar.h
| | |- library.json (optional, custom build options, etc) https://docs.platformio.org/page/librarymanager/config.html
| |
| |--Foo
| | |- Foo.c
| | |- Foo.h
| |
| |- README --> THIS FILE
|
|- platformio.ini
|--src
|- main.c
and a contents of `src/main.c`:
```
#include <Foo.h>
#include <Bar.h>
int main (void)
{
...
}
```
PlatformIO Library Dependency Finder will find automatically dependent
libraries scanning project source files.
More information about PlatformIO Library Dependency Finder
- https://docs.platformio.org/page/librarymanager/ldf.html

22
blinds/platformio.ini Normal file
View File

@@ -0,0 +1,22 @@
; PlatformIO Project Configuration File
;
; Build options: build flags, source filter
; Upload options: custom upload port, speed and extra flags
; Library options: dependencies, extra library storages
; Advanced options: extra scripting
;
; Please visit documentation for the other options and examples
; https://docs.platformio.org/page/projectconf.html
[env:esp32-c3]
platform = espressif32
board = lolin_c3_mini
framework = arduino
monitor_speed = 115200
lib_deps =
#gyverlibs/AccelMotor@^1.3
#simplefoc/SimpleDCMotor@^1.0.1
lib_ldf_mode = deep+
build_flags =
-DCORE_DEBUG_LEVEL=3
-DNDEF_DEBUG=1

290
blinds/src/main.cpp Normal file
View File

@@ -0,0 +1,290 @@
#include <Arduino.h>
/*
* Author: Automatic Addison
* Website: https://automaticaddison.com
* Description: Calculate the angular velocity in radians/second of a DC motor
* with a built-in encoder (forward = positive; reverse = negative)
*/
// Motor encoder output pulses per 360 degree revolution (measured manually)
#define ENC_COUNT_REV (500 * 11) //12rmp motor
// Encoder output to Arduino Interrupt pin. Tracks the pulse count.
#define ENC_IN_RIGHT_A 10
// Other encoder output to Arduino to keep track of wheel direction
// Tracks the direction of rotation.
#define ENC_IN_RIGHT_B 9
#define MOTOR_IN1 6
#define MOTOR_IN2 7
#define SPEED 92
#define POWERMETER 4
// True = Forward; False = Reverse
bool Direction_right = true;
// Keep track of the number of right wheel pulses
volatile long right_wheel_pulse_count = 0;
volatile long pulscountswap = 0;
volatile long absPulseCount = 0;
// One-second interval for measurements
int interval = 1000;
int swapdelay = 500;
// Counters for milliseconds during interval
long previousMillis = 0;
long currentMillis = 0;
// Variable for RPM measuerment
float rpm_right = 0;
// Variable for angular velocity measurement
float ang_velocity_right = 0;
float ang_velocity_right_deg = 0;
const float rpm_to_radians = 0.10471975512;
const float rad_to_deg = 57.29578;
bool dir = false;
bool motorruns = false;
void right_wheel_pulse();
// ***** function calls ******
float getVPP()
{
float result;
int readValue; // value read from the sensor
int maxValue = 0; // store max value here
int minValue = 4096; // store min value here ESP32 ADC resolution
uint32_t start_time = millis();
while((millis()-start_time) < 1000) //sample for 1 Sec
{
readValue = analogRead(POWERMETER);
// see if you have a new maxValue
if (readValue > maxValue)
{
/*record the maximum sensor value*/
maxValue = readValue;
}
if (readValue < minValue)
{
/*record the minimum sensor value*/
minValue = readValue;
}
}
// Subtract min from max
result = ((maxValue - minValue) * 3.3)/4096.0; //ESP32 ADC resolution 4096
log_i("ADC: %0.0f", result);
return result;
}
void run_stop()
{
digitalWrite(MOTOR_IN1, LOW);
digitalWrite(MOTOR_IN2, LOW);
analogWrite(MOTOR_IN1, 0);
analogWrite(MOTOR_IN2, 0);
motorruns = false;
log_i("stop");
}
void run_to()
{
}
void run_left(int speed = SPEED)
{
// run_stop();
// delay(swapdelay);
digitalWrite(MOTOR_IN1, LOW);
analogWrite(MOTOR_IN2, speed);
log_i("left");
motorruns = true;
dir = true;
}
void run_right(int speed = SPEED)
{
// run_stop();
// delay(swapdelay);
digitalWrite(MOTOR_IN2, LOW);
analogWrite(MOTOR_IN1, speed);
log_i("right");
motorruns = true;
dir = false;
}
bool run_to_pos()
{
return false;
}
void swap_dir()
{
if(dir)
{
run_right();
}
else{
run_left();
}
log_i("swap");
}
long previouspulses = 0;
void calibratemotor()
{
delay(300);
bool stop = false;
run_right();
previouspulses = absPulseCount;
while(!stop)
{
delay(100);
if(absPulseCount - previouspulses > 40)
{
log_i("absPulseCount (%i)- previouspulses(%i) = %i", absPulseCount, previouspulses, absPulseCount - previouspulses);
previouspulses = absPulseCount;
delay(50);
}
else
{
stop = true;
run_stop();
log_i("left done, %i", absPulseCount);
absPulseCount = 0;
}
}
stop = false;
delay(1000);
run_left();
previouspulses = absPulseCount;
while(!stop)
{
delay(100);
if(absPulseCount - previouspulses < -30)
{
log_i("absPulseCount (%i)- previouspulses(%i) = %i", absPulseCount, previouspulses, absPulseCount - previouspulses);
previouspulses = absPulseCount;
delay(50);
}
else
{
stop = true;
run_stop();
log_i("right done, %i", absPulseCount);
}
}
}
void setup() {
// Open the serial port at 9600 bps
Serial.begin(115200);
delay(5000);
log_i("start sketch");
// Set pin states of the encoder
pinMode(ENC_IN_RIGHT_A , INPUT_PULLUP);
pinMode(ENC_IN_RIGHT_B , INPUT);
pinMode(MOTOR_IN1, OUTPUT);
pinMode(MOTOR_IN2, OUTPUT);
pinMode(POWERMETER, ANALOG);
// Every time the pin goes high, this is a pulse
attachInterrupt(digitalPinToInterrupt(ENC_IN_RIGHT_A), right_wheel_pulse, RISING);
log_i("init done");
calibratemotor();
//run_left();
}
long swaptime = 0;
void loop() {
// Record the time
currentMillis = millis();
// If one second has passed, print the number of pulses
if ((currentMillis - previousMillis > interval) && (motorruns = true))
{
previousMillis = currentMillis;
// Calculate revolutions per minute
rpm_right = (float)(right_wheel_pulse_count * 60 / ENC_COUNT_REV);
ang_velocity_right = rpm_right * rpm_to_radians;
ang_velocity_right_deg = ang_velocity_right * rad_to_deg;
log_i("Pulses/s: %i", right_wheel_pulse_count);
log_i("Speed: %0.0f", rpm_right);
log_i("RPM");
log_i("Angular Velocity: %0.00f", rpm_right);
log_i("rad per second \t %f deg per second", ang_velocity_right_deg);
log_i("powermeter %0.0f", getVPP());
log_i("absulote pulsecount = %i", absPulseCount);
right_wheel_pulse_count = 0;
}
// if(pulscountswap > ENC_COUNT_REV/4)
// {
// swap_dir();
// pulscountswap = 0;
// }
// if(millis() - swaptime > 5000)
// {
// swaptime = millis();
// swap_dir();
// }
// if(rpm_right < 1 && dir)
// {
// run_stop();
// }
}
// Increment the number of pulses by 1
void right_wheel_pulse() {
// Read the value for the encoder for the right wheel
int val = digitalRead(ENC_IN_RIGHT_B);
if(val == LOW) {
Direction_right = false; // Reverse
}
else {
Direction_right = true; // Forward
}
if (Direction_right) {
right_wheel_pulse_count++;
pulscountswap ++;
absPulseCount ++;
}
else {
right_wheel_pulse_count--;
pulscountswap ++;
absPulseCount --;
}
}

11
blinds/test/README Normal file
View File

@@ -0,0 +1,11 @@
This directory is intended for PlatformIO Test Runner and project tests.
Unit Testing is a software testing method by which individual units of
source code, sets of one or more MCU program modules together with associated
control data, usage procedures, and operating procedures, are tested to
determine whether they are fit for use. Unit testing finds problems early
in the development cycle.
More information about PlatformIO Unit Testing:
- https://docs.platformio.org/en/latest/advanced/unit-testing/index.html