This commit is contained in:
2024-03-17 21:08:41 +01:00
parent f979f805e7
commit 627f3d8f5c
20 changed files with 431 additions and 67562 deletions

290
blinds/src/main.cpp Normal file
View File

@@ -0,0 +1,290 @@
#include <Arduino.h>
/*
* Author: Automatic Addison
* Website: https://automaticaddison.com
* Description: Calculate the angular velocity in radians/second of a DC motor
* with a built-in encoder (forward = positive; reverse = negative)
*/
// Motor encoder output pulses per 360 degree revolution (measured manually)
#define ENC_COUNT_REV (500 * 11) //12rmp motor
// Encoder output to Arduino Interrupt pin. Tracks the pulse count.
#define ENC_IN_RIGHT_A 10
// Other encoder output to Arduino to keep track of wheel direction
// Tracks the direction of rotation.
#define ENC_IN_RIGHT_B 9
#define MOTOR_IN1 6
#define MOTOR_IN2 7
#define SPEED 92
#define POWERMETER 4
// True = Forward; False = Reverse
bool Direction_right = true;
// Keep track of the number of right wheel pulses
volatile long right_wheel_pulse_count = 0;
volatile long pulscountswap = 0;
volatile long absPulseCount = 0;
// One-second interval for measurements
int interval = 1000;
int swapdelay = 500;
// Counters for milliseconds during interval
long previousMillis = 0;
long currentMillis = 0;
// Variable for RPM measuerment
float rpm_right = 0;
// Variable for angular velocity measurement
float ang_velocity_right = 0;
float ang_velocity_right_deg = 0;
const float rpm_to_radians = 0.10471975512;
const float rad_to_deg = 57.29578;
bool dir = false;
bool motorruns = false;
void right_wheel_pulse();
// ***** function calls ******
float getVPP()
{
float result;
int readValue; // value read from the sensor
int maxValue = 0; // store max value here
int minValue = 4096; // store min value here ESP32 ADC resolution
uint32_t start_time = millis();
while((millis()-start_time) < 1000) //sample for 1 Sec
{
readValue = analogRead(POWERMETER);
// see if you have a new maxValue
if (readValue > maxValue)
{
/*record the maximum sensor value*/
maxValue = readValue;
}
if (readValue < minValue)
{
/*record the minimum sensor value*/
minValue = readValue;
}
}
// Subtract min from max
result = ((maxValue - minValue) * 3.3)/4096.0; //ESP32 ADC resolution 4096
log_i("ADC: %0.0f", result);
return result;
}
void run_stop()
{
digitalWrite(MOTOR_IN1, LOW);
digitalWrite(MOTOR_IN2, LOW);
analogWrite(MOTOR_IN1, 0);
analogWrite(MOTOR_IN2, 0);
motorruns = false;
log_i("stop");
}
void run_to()
{
}
void run_left(int speed = SPEED)
{
// run_stop();
// delay(swapdelay);
digitalWrite(MOTOR_IN1, LOW);
analogWrite(MOTOR_IN2, speed);
log_i("left");
motorruns = true;
dir = true;
}
void run_right(int speed = SPEED)
{
// run_stop();
// delay(swapdelay);
digitalWrite(MOTOR_IN2, LOW);
analogWrite(MOTOR_IN1, speed);
log_i("right");
motorruns = true;
dir = false;
}
bool run_to_pos()
{
return false;
}
void swap_dir()
{
if(dir)
{
run_right();
}
else{
run_left();
}
log_i("swap");
}
long previouspulses = 0;
void calibratemotor()
{
delay(300);
bool stop = false;
run_right();
previouspulses = absPulseCount;
while(!stop)
{
delay(100);
if(absPulseCount - previouspulses > 40)
{
log_i("absPulseCount (%i)- previouspulses(%i) = %i", absPulseCount, previouspulses, absPulseCount - previouspulses);
previouspulses = absPulseCount;
delay(50);
}
else
{
stop = true;
run_stop();
log_i("left done, %i", absPulseCount);
absPulseCount = 0;
}
}
stop = false;
delay(1000);
run_left();
previouspulses = absPulseCount;
while(!stop)
{
delay(100);
if(absPulseCount - previouspulses < -30)
{
log_i("absPulseCount (%i)- previouspulses(%i) = %i", absPulseCount, previouspulses, absPulseCount - previouspulses);
previouspulses = absPulseCount;
delay(50);
}
else
{
stop = true;
run_stop();
log_i("right done, %i", absPulseCount);
}
}
}
void setup() {
// Open the serial port at 9600 bps
Serial.begin(115200);
delay(5000);
log_i("start sketch");
// Set pin states of the encoder
pinMode(ENC_IN_RIGHT_A , INPUT_PULLUP);
pinMode(ENC_IN_RIGHT_B , INPUT);
pinMode(MOTOR_IN1, OUTPUT);
pinMode(MOTOR_IN2, OUTPUT);
pinMode(POWERMETER, ANALOG);
// Every time the pin goes high, this is a pulse
attachInterrupt(digitalPinToInterrupt(ENC_IN_RIGHT_A), right_wheel_pulse, RISING);
log_i("init done");
calibratemotor();
//run_left();
}
long swaptime = 0;
void loop() {
// Record the time
currentMillis = millis();
// If one second has passed, print the number of pulses
if ((currentMillis - previousMillis > interval) && (motorruns = true))
{
previousMillis = currentMillis;
// Calculate revolutions per minute
rpm_right = (float)(right_wheel_pulse_count * 60 / ENC_COUNT_REV);
ang_velocity_right = rpm_right * rpm_to_radians;
ang_velocity_right_deg = ang_velocity_right * rad_to_deg;
log_i("Pulses/s: %i", right_wheel_pulse_count);
log_i("Speed: %0.0f", rpm_right);
log_i("RPM");
log_i("Angular Velocity: %0.00f", rpm_right);
log_i("rad per second \t %f deg per second", ang_velocity_right_deg);
log_i("powermeter %0.0f", getVPP());
log_i("absulote pulsecount = %i", absPulseCount);
right_wheel_pulse_count = 0;
}
// if(pulscountswap > ENC_COUNT_REV/4)
// {
// swap_dir();
// pulscountswap = 0;
// }
// if(millis() - swaptime > 5000)
// {
// swaptime = millis();
// swap_dir();
// }
// if(rpm_right < 1 && dir)
// {
// run_stop();
// }
}
// Increment the number of pulses by 1
void right_wheel_pulse() {
// Read the value for the encoder for the right wheel
int val = digitalRead(ENC_IN_RIGHT_B);
if(val == LOW) {
Direction_right = false; // Reverse
}
else {
Direction_right = true; // Forward
}
if (Direction_right) {
right_wheel_pulse_count++;
pulscountswap ++;
absPulseCount ++;
}
else {
right_wheel_pulse_count--;
pulscountswap ++;
absPulseCount --;
}
}