Files
evDash/CarKiaEniro.cpp
Michal 71dc8e8555 refactoring - simplified usage of hexToDec (#10)
* refactoring - simplified usage of hexToDec - replaced by hexToDecFromResponse

* refactoring - simplified usage of hexToDec - replaced by hexToDecFromResponse (applied to CarHyundaiIoniq.cpp)

* refactoring - simplified usage of hexToDec - replaced by hexToDecFromResponse (applied to rest)

* refactoring - simplified usage of hexToDec - replaced by hexToDecFromResponse (fix)

* refactoring - simplified usage of float(strol(liveData->responseRowMerged.substring(...))) - as liveData->decFromResponse()
2020-12-07 19:43:38 +01:00

454 lines
22 KiB
C++

#ifndef CARKIAENIRO_CPP
#define CARKIAENIRO_CPP
/*
* eNiro/Kona chargings limits depending on battery temperature (min.value of 01-04 battery module)
>= 35°C BMS allows max 180A
>= 25°C without limit (200A)
>= 15°C BMS allows max 120A
>= 5°C BMS allows max 90A
>= 1°C BMS allows max 60A
<= 0°C BMS allows max 40A
*/
#include <Arduino.h>
#include <stdint.h>
#include <WString.h>
#include <string.h>
#include <sys/time.h>
#include "LiveData.h"
#include "CarKiaEniro.h"
#define commandQueueCountKiaENiro 30
#define commandQueueLoopFromKiaENiro 10
/**
* activateCommandQueue
*/
void CarKiaEniro::activateCommandQueue() {
String commandQueueKiaENiro[commandQueueCountKiaENiro] = {
"AT Z", // Reset all
"AT I", // Print the version ID
"AT S0", // Printing of spaces on
"AT E0", // Echo off
"AT L0", // Linefeeds off
"AT SP 6", // Select protocol to ISO 15765-4 CAN (11 bit ID, 500 kbit/s)
//"AT AL", // Allow Long (>7 byte) messages
//"AT AR", // Automatically receive
//"AT H1", // Headers on (debug only)
//"AT D1", // Display of the DLC on
//"AT CAF0", // Automatic formatting off
////"AT AT0", // disabled adaptive timing
"AT DP",
"AT ST16", // reduced timeout to 1, orig.16
// Loop from (KIA ENIRO)
// ABS / ESP + AHB
"ATSH7D1",
"22C101", // brake, park/drive mode
// IGPM
"ATSH770",
"22BC03", // low beam
"22BC06", // brake light
// VMCU
"ATSH7E2",
"2101", // speed, ...
"2102", // aux, ...
// BMS
"ATSH7E4",
"220101", // power kw, ...
"220102", // cell voltages
"220103", // cell voltages
"220104", // cell voltages
"220105", // soh, soc, ..
"220106", // cooling water temp
// Aircondition
"ATSH7B3",
"220100", // in/out temp
"220102", // coolant temp1, 2
// BCM / TPMS
"ATSH7A0",
"22c00b", // tire pressure/temp
// CLUSTER MODULE
"ATSH7C6",
"22B002", // odo
};
// 39 or 64 kWh model?
liveData->params.batModuleTempCount = 4;
liveData->params.batteryTotalAvailableKWh = 64;
// =(I18*0,615)*(1+(I18*0,0008)) soc to kwh niro ev 2020
if (liveData->settings.carType == CAR_KIA_ENIRO_2020_39 || liveData->settings.carType == CAR_HYUNDAI_KONA_2020_39) {
liveData->params.batteryTotalAvailableKWh = 39.2;
}
// Empty and fill command queue
for (int i = 0; i < 300; i++) {
liveData->commandQueue[i] = "";
}
for (int i = 0; i < commandQueueCountKiaENiro; i++) {
liveData->commandQueue[i] = commandQueueKiaENiro[i];
}
liveData->commandQueueLoopFrom = commandQueueLoopFromKiaENiro;
liveData->commandQueueCount = commandQueueCountKiaENiro;
}
/**
* parseRowMerged
*/
void CarKiaEniro::parseRowMerged() {
bool tempByte;
float tempFloat;
// ABS / ESP + AHB 7D1
if (liveData->currentAtshRequest.equals("ATSH7D1")) {
if (liveData->commandRequest.equals("22C101")) {
uint8_t driveMode = liveData->hexToDecFromResponse(22, 24, 1, false);
liveData->params.forwardDriveMode = (driveMode == 4);
liveData->params.reverseDriveMode = (driveMode == 2);
liveData->params.parkModeOrNeutral = (driveMode == 1);
}
}
// IGPM
if (liveData->currentAtshRequest.equals("ATSH770")) {
if (liveData->commandRequest.equals("22BC03")) {
tempByte = liveData->hexToDecFromResponse(16, 18, 1, false);
liveData->params.ignitionOnPrevious = liveData->params.ignitionOn;
liveData->params.ignitionOn = (bitRead(tempByte, 5) == 1);
if (liveData->params.ignitionOnPrevious && !liveData->params.ignitionOn)
liveData->params.automaticShutdownTimer = liveData->params.currentTime;
liveData->params.lightInfo = liveData->hexToDecFromResponse(18, 20, 1, false);
liveData->params.headLights = (bitRead(liveData->params.lightInfo, 5) == 1);
liveData->params.dayLights = (bitRead(liveData->params.lightInfo, 3) == 1);
}
if (liveData->commandRequest.equals("22BC06")) {
liveData->params.brakeLightInfo = liveData->hexToDecFromResponse(14, 16, 1, false);
liveData->params.brakeLights = (bitRead(liveData->params.brakeLightInfo, 5) == 1);
}
}
// VMCU 7E2
if (liveData->currentAtshRequest.equals("ATSH7E2")) {
if (liveData->commandRequest.equals("2101")) {
liveData->params.speedKmh = liveData->hexToDecFromResponse(32, 36, 2, false) * 0.0155; // / 100.0 *1.609 = real to gps is 1.750
if (liveData->params.speedKmh < -99 || liveData->params.speedKmh > 200)
liveData->params.speedKmh = 0;
}
if (liveData->commandRequest.equals("2102")) {
liveData->params.auxPerc = liveData->hexToDecFromResponse(50, 52, 1, false);
liveData->params.auxCurrentAmp = - liveData->hexToDecFromResponse(46, 50, 2, true) / 1000.0;
}
}
// Cluster module 7c6
if (liveData->currentAtshRequest.equals("ATSH7C6")) {
if (liveData->commandRequest.equals("22B002")) {
tempFloat = liveData->params.odoKm;
liveData->params.odoKm = liveData->decFromResponse(18, 24);
if (tempFloat != liveData->params.odoKm)
liveData->params.sdcardCanNotify = true;
}
}
// Aircon 7b3
if (liveData->currentAtshRequest.equals("ATSH7B3")) {
if (liveData->commandRequest.equals("220100")) {
liveData->params.indoorTemperature = (liveData->hexToDecFromResponse(16, 18, 1, false) / 2) - 40;
liveData->params.outdoorTemperature = (liveData->hexToDecFromResponse(18, 20, 1, false) / 2) - 40;
}
if (liveData->commandRequest.equals("220102") && liveData->responseRowMerged.substring(12, 14) == "00") {
liveData->params.coolantTemp1C = (liveData->hexToDecFromResponse(14, 16, 1, false) / 2) - 40;
liveData->params.coolantTemp2C = (liveData->hexToDecFromResponse(16, 18, 1, false) / 2) - 40;
}
}
// BMS 7e4
if (liveData->currentAtshRequest.equals("ATSH7E4")) {
if (liveData->commandRequest.equals("220101")) {
liveData->params.operationTimeSec = liveData->hexToDecFromResponse(98, 106, 4, false);
liveData->params.cumulativeEnergyChargedKWh = liveData->decFromResponse(82, 90) / 10.0;
if (liveData->params.cumulativeEnergyChargedKWhStart == -1)
liveData->params.cumulativeEnergyChargedKWhStart = liveData->params.cumulativeEnergyChargedKWh;
liveData->params.cumulativeEnergyDischargedKWh = liveData->decFromResponse(90, 98) / 10.0;
if (liveData->params.cumulativeEnergyDischargedKWhStart == -1)
liveData->params.cumulativeEnergyDischargedKWhStart = liveData->params.cumulativeEnergyDischargedKWh;
liveData->params.availableChargePower = liveData->decFromResponse(16, 20) / 100.0;
liveData->params.availableDischargePower = liveData->decFromResponse(20, 24) / 100.0;
//liveData->params.isolationResistanceKOhm = liveData->hexToDecFromResponse(118, 122, 2, true);
liveData->params.batFanStatus = liveData->hexToDecFromResponse(60, 62, 2, true);
liveData->params.batFanFeedbackHz = liveData->hexToDecFromResponse(62, 64, 2, true);
liveData->params.auxVoltage = liveData->hexToDecFromResponse(64, 66, 2, true) / 10.0;
liveData->params.batPowerAmp = - liveData->hexToDecFromResponse(26, 30, 2, true) / 10.0;
liveData->params.batVoltage = liveData->hexToDecFromResponse(30, 34, 2, false) / 10.0;
liveData->params.batPowerKw = (liveData->params.batPowerAmp * liveData->params.batVoltage) / 1000.0;
if (liveData->params.batPowerKw < 0) // Reset charging start time
liveData->params.chargingStartTime = liveData->params.currentTime;
liveData->params.batPowerKwh100 = liveData->params.batPowerKw / liveData->params.speedKmh * 100;
liveData->params.batCellMaxV = liveData->hexToDecFromResponse(52, 54, 1, false) / 50.0;
liveData->params.batCellMinV = liveData->hexToDecFromResponse(56, 58, 1, false) / 50.0;
liveData->params.batModuleTempC[0] = liveData->hexToDecFromResponse(38, 40, 1, true);
liveData->params.batModuleTempC[1] = liveData->hexToDecFromResponse(40, 42, 1, true);
liveData->params.batModuleTempC[2] = liveData->hexToDecFromResponse(42, 44, 1, true);
liveData->params.batModuleTempC[3] = liveData->hexToDecFromResponse(44, 46, 1, true);
liveData->params.motorRpm = liveData->hexToDecFromResponse(112, 116, 2, false);
//liveData->params.batTempC = liveData->hexToDecFromResponse(36, 38, 1, true);
//liveData->params.batMaxC = liveData->hexToDecFromResponse(34, 36, 1, true);
//liveData->params.batMinC = liveData->hexToDecFromResponse(36, 38, 1, true);
// This is more accurate than min/max from BMS. It's required to detect kona/eniro cold gates (min 15C is needed > 43kW charging, min 25C is needed > 58kW charging)
liveData->params.batMinC = liveData->params.batMaxC = liveData->params.batModuleTempC[0];
for (uint16_t i = 1; i < liveData->params.batModuleTempCount; i++) {
if (liveData->params.batModuleTempC[i] < liveData->params.batMinC)
liveData->params.batMinC = liveData->params.batModuleTempC[i];
if (liveData->params.batModuleTempC[i] > liveData->params.batMaxC)
liveData->params.batMaxC = liveData->params.batModuleTempC[i];
}
liveData->params.batTempC = liveData->params.batMinC;
liveData->params.batInletC = liveData->hexToDecFromResponse(50, 52, 1, true);
if (liveData->params.speedKmh < 10 && liveData->params.batPowerKw >= 1 && liveData->params.socPerc > 0 && liveData->params.socPerc <= 100) {
if ( liveData->params.chargingGraphMinKw[int(liveData->params.socPerc)] < 0 || liveData->params.batPowerKw < liveData->params.chargingGraphMinKw[int(liveData->params.socPerc)])
liveData->params.chargingGraphMinKw[int(liveData->params.socPerc)] = liveData->params.batPowerKw;
if ( liveData->params.chargingGraphMaxKw[int(liveData->params.socPerc)] < 0 || liveData->params.batPowerKw > liveData->params.chargingGraphMaxKw[int(liveData->params.socPerc)])
liveData->params.chargingGraphMaxKw[int(liveData->params.socPerc)] = liveData->params.batPowerKw;
liveData->params.chargingGraphBatMinTempC[int(liveData->params.socPerc)] = liveData->params.batMinC;
liveData->params.chargingGraphBatMaxTempC[int(liveData->params.socPerc)] = liveData->params.batMaxC;
liveData->params.chargingGraphHeaterTempC[int(liveData->params.socPerc)] = liveData->params.batHeaterC;
liveData->params.chargingGraphWaterCoolantTempC[int(liveData->params.socPerc)] = liveData->params.coolingWaterTempC;
}
}
// BMS 7e4
if (liveData->commandRequest.equals("220102") && liveData->responseRowMerged.substring(12, 14) == "FF") {
for (int i = 0; i < 32; i++) {
liveData->params.cellVoltage[i] = liveData->hexToDecFromResponse(14 + (i * 2), 14 + (i * 2) + 2, 1, false) / 50;
}
}
// BMS 7e4
if (liveData->commandRequest.equals("220103")) {
for (int i = 0; i < 32; i++) {
liveData->params.cellVoltage[32 + i] = liveData->hexToDecFromResponse(14 + (i * 2), 14 + (i * 2) + 2, 1, false) / 50;
}
}
// BMS 7e4
if (liveData->commandRequest.equals("220104")) {
for (int i = 0; i < 32; i++) {
liveData->params.cellVoltage[64 + i] = liveData->hexToDecFromResponse(14 + (i * 2), 14 + (i * 2) + 2, 1, false) / 50;
}
}
// BMS 7e4
if (liveData->commandRequest.equals("220105")) {
liveData->params.socPercPrevious = liveData->params.socPerc;
liveData->params.sohPerc = liveData->hexToDecFromResponse(56, 60, 2, false) / 10.0;
liveData->params.socPerc = liveData->hexToDecFromResponse(68, 70, 1, false) / 2.0;
if (liveData->params.socPercPrevious != liveData->params.socPerc)
liveData->params.sdcardCanNotify = true;
// Soc10ced table, record x0% CEC/CED table (ex. 90%->89%, 80%->79%)
if (liveData->params.socPercPrevious - liveData->params.socPerc > 0) {
byte index = (int(liveData->params.socPerc) == 4) ? 0 : (int)(liveData->params.socPerc / 10) + 1;
if ((int(liveData->params.socPerc) % 10 == 9 || int(liveData->params.socPerc) == 4) && liveData->params.soc10ced[index] == -1) {
liveData->params.soc10ced[index] = liveData->params.cumulativeEnergyDischargedKWh;
liveData->params.soc10cec[index] = liveData->params.cumulativeEnergyChargedKWh;
liveData->params.soc10odo[index] = liveData->params.odoKm;
liveData->params.soc10time[index] = liveData->params.currentTime;
}
}
liveData->params.bmsUnknownTempA = liveData->hexToDecFromResponse(30, 32, 1, true);
liveData->params.batHeaterC = liveData->hexToDecFromResponse(52, 54, 1, true);
liveData->params.bmsUnknownTempB = liveData->hexToDecFromResponse(82, 84, 1, true);
//
for (int i = 30; i < 32; i++) { // ai/aj position
liveData->params.cellVoltage[96 - 30 + i] = liveData->hexToDecFromResponse(14 + (i * 2), 14 + (i * 2) + 2, 1, false) / 50;
}
}
// BMS 7e4
if (liveData->commandRequest.equals("220106")) {
liveData->params.coolingWaterTempC = liveData->hexToDecFromResponse(14, 16, 1, false);
liveData->params.bmsUnknownTempC = liveData->hexToDecFromResponse(18, 20, 1, true);
liveData->params.bmsUnknownTempD = liveData->hexToDecFromResponse(46, 48, 1, true);
}
}
// TPMS 7a0
if (liveData->currentAtshRequest.equals("ATSH7A0")) {
if (liveData->commandRequest.equals("22c00b")) {
liveData->params.tireFrontLeftPressureBar = liveData->hexToDecFromResponse(14, 16, 2, false) / 72.51886900361; // === OK Valid *0.2 / 14.503773800722
liveData->params.tireFrontRightPressureBar = liveData->hexToDecFromResponse(22, 24, 2, false) / 72.51886900361; // === OK Valid *0.2 / 14.503773800722
liveData->params.tireRearRightPressureBar = liveData->hexToDecFromResponse(30, 32, 2, false) / 72.51886900361; // === OK Valid *0.2 / 14.503773800722
liveData->params.tireRearLeftPressureBar = liveData->hexToDecFromResponse(38, 40, 2, false) / 72.51886900361; // === OK Valid *0.2 / 14.503773800722
liveData->params.tireFrontLeftTempC = liveData->hexToDecFromResponse(16, 18, 2, false) - 50; // === OK Valid
liveData->params.tireFrontRightTempC = liveData->hexToDecFromResponse(24, 26, 2, false) - 50; // === OK Valid
liveData->params.tireRearRightTempC = liveData->hexToDecFromResponse(32, 34, 2, false) - 50; // === OK Valid
liveData->params.tireRearLeftTempC = liveData->hexToDecFromResponse(40, 42, 2, false) - 50; // === OK Valid
}
}
}
/**
* loadTestData
*/
void CarKiaEniro::loadTestData() {
// IGPM
liveData->currentAtshRequest = "ATSH770";
// 22BC03
liveData->commandRequest = "22BC03";
liveData->responseRowMerged = "62BC03FDEE7C730A600000AAAA";
parseRowMerged();
// ABS / ESP + AHB ATSH7D1
liveData->currentAtshRequest = "ATSH7D1";
// 2101
liveData->commandRequest = "22C101";
liveData->responseRowMerged = "62C1015FD7E7D0FFFF00FF04D0D400000000FF7EFF0030F5010000FFFF7F6307F207FE05FF00FF3FFFFFAAAAAAAAAAAA";
parseRowMerged();
// VMCU ATSH7E2
liveData->currentAtshRequest = "ATSH7E2";
// 2101
liveData->commandRequest = "2101";
liveData->responseRowMerged = "6101FFF8000009285A3B0648030000B4179D763404080805000000";
parseRowMerged();
// 2102
liveData->commandRequest = "2102";
liveData->responseRowMerged = "6102F8FFFC000101000000840FBF83BD33270680953033757F59291C76000001010100000007000000";
liveData->responseRowMerged = "6102F8FFFC000101000000931CC77F4C39040BE09BA7385D8158832175000001010100000007000000";
parseRowMerged();
// "ATSH7DF",
liveData->currentAtshRequest = "ATSH7DF";
// 2106
liveData->commandRequest = "2106";
liveData->responseRowMerged = "6106FFFF800000000000000200001B001C001C000600060006000E000000010000000000000000013D013D013E013E00";
parseRowMerged();
// AIRCON / ACU ATSH7B3
liveData->currentAtshRequest = "ATSH7B3";
// 220100
liveData->commandRequest = "220100";
liveData->responseRowMerged = "6201007E5027C8FF7F765D05B95AFFFF5AFF11FFFFFFFFFFFF6AFFFF2DF0757630FFFF00FFFF000000";
liveData->responseRowMerged = "6201007E5027C8FF867C58121010FFFF10FF8EFFFFFFFFFFFF10FFFF0DF0617900FFFF01FFFF000000";
parseRowMerged();
// BMS ATSH7E4
liveData->currentAtshRequest = "ATSH7E4";
// 220101
liveData->commandRequest = "220101";
liveData->responseRowMerged = "620101FFF7E7FF99000000000300B10EFE120F11100F12000018C438C30B00008400003864000035850000153A00001374000647010D017F0BDA0BDA03E8";
liveData->responseRowMerged = "620101FFF7E7FFB3000000000300120F9B111011101011000014CC38CB3B00009100003A510000367C000015FB000013D3000690250D018E0000000003E8";
parseRowMerged();
// 220102
liveData->commandRequest = "220102";
liveData->responseRowMerged = "620102FFFFFFFFCBCBCBCBCBCBCBCBCBCBCBCBCBCBCBCBCBCBCBCBCBCBCBCBCBCBCBCBCBCBCBCBAAAA";
parseRowMerged();
// 220103
liveData->commandRequest = "220103";
liveData->responseRowMerged = "620103FFFFFFFFCBCBCBCBCBCBCBCBCBCBCBCBCBCBCBCBCBCBCACBCACACFCCCBCBCBCBCBCBCBCBAAAA";
parseRowMerged();
// 220104
liveData->commandRequest = "220104";
liveData->responseRowMerged = "620104FFFFFFFFCBCBCBCBCBCBCBCBCBCBCBCBCBCBCBCBCBCBCBCBCBCBCBCBCBCBCBCBCBCBCBCBAAAA";
parseRowMerged();
// 220105
liveData->commandRequest = "220105";
liveData->responseRowMerged = "620105003fff9000000000000000000F8A86012B4946500101500DAC03E800000000AC0000C7C701000F00000000AAAA";
liveData->responseRowMerged = "620105003FFF90000000000000000014918E012927465000015013BB03E800000000BB0000CBCB01001300000000AAAA";
parseRowMerged();
// 220106
liveData->commandRequest = "220106";
liveData->responseRowMerged = "620106FFFFFFFF14001A00240000003A7C86B4B30000000928EA00";
parseRowMerged();
// BCM / TPMS ATSH7A0
liveData->currentAtshRequest = "ATSH7A0";
// 22c00b
liveData->commandRequest = "22c00b";
liveData->responseRowMerged = "62C00BFFFF0000B93D0100B43E0100B43D0100BB3C0100AAAAAAAA";
parseRowMerged();
// ATSH7C6
liveData->currentAtshRequest = "ATSH7C6";
// 22b002
liveData->commandRequest = "22b002";
liveData->responseRowMerged = "62B002E0000000FFB400330B0000000000000000";
parseRowMerged();
liveData->params.batModuleTempC[0] = 28;
liveData->params.batModuleTempC[1] = 29;
liveData->params.batModuleTempC[2] = 28;
liveData->params.batModuleTempC[3] = 30;
// This is more accurate than min/max from BMS. It's required to detect kona/eniro cold gates (min 15C is needed > 43kW charging, min 25C is needed > 58kW charging)
liveData->params.batMinC = liveData->params.batMaxC = liveData->params.batModuleTempC[0];
for (uint16_t i = 1; i < liveData->params.batModuleTempCount; i++) {
if (liveData->params.batModuleTempC[i] < liveData->params.batMinC)
liveData->params.batMinC = liveData->params.batModuleTempC[i];
if (liveData->params.batModuleTempC[i] > liveData->params.batMaxC)
liveData->params.batMaxC = liveData->params.batModuleTempC[i];
}
liveData->params.batTempC = liveData->params.batMinC;
//
liveData->params.soc10ced[10] = 2200;
liveData->params.soc10cec[10] = 2500;
liveData->params.soc10odo[10] = 13000;
liveData->params.soc10time[10] = 13000;
liveData->params.soc10ced[9] = liveData->params.soc10ced[10] + 6.4;
liveData->params.soc10cec[9] = liveData->params.soc10cec[10] + 0;
liveData->params.soc10odo[9] = liveData->params.soc10odo[10] + 30;
liveData->params.soc10time[9] = liveData->params.soc10time[10] + 900;
liveData->params.soc10ced[8] = liveData->params.soc10ced[9] + 6.8;
liveData->params.soc10cec[8] = liveData->params.soc10cec[9] + 0;
liveData->params.soc10odo[8] = liveData->params.soc10odo[9] + 30;
liveData->params.soc10time[8] = liveData->params.soc10time[9] + 900;
liveData->params.soc10ced[7] = liveData->params.soc10ced[8] + 7.2;
liveData->params.soc10cec[7] = liveData->params.soc10cec[8] + 0.6;
liveData->params.soc10odo[7] = liveData->params.soc10odo[8] + 30;
liveData->params.soc10time[7] = liveData->params.soc10time[8] + 900;
liveData->params.soc10ced[6] = liveData->params.soc10ced[7] + 6.7;
liveData->params.soc10cec[6] = liveData->params.soc10cec[7] + 0;
liveData->params.soc10odo[6] = liveData->params.soc10odo[7] + 30;
liveData->params.soc10time[6] = liveData->params.soc10time[7] + 900;
liveData->params.soc10ced[5] = liveData->params.soc10ced[6] + 6.7;
liveData->params.soc10cec[5] = liveData->params.soc10cec[6] + 0;
liveData->params.soc10odo[5] = liveData->params.soc10odo[6] + 30;
liveData->params.soc10time[5] = liveData->params.soc10time[6] + 900;
liveData->params.soc10ced[4] = liveData->params.soc10ced[5] + 6.4;
liveData->params.soc10cec[4] = liveData->params.soc10cec[5] + 0.3;
liveData->params.soc10odo[4] = liveData->params.soc10odo[5] + 30;
liveData->params.soc10time[4] = liveData->params.soc10time[5] + 900;
liveData->params.soc10ced[3] = liveData->params.soc10ced[4] + 6.4;
liveData->params.soc10cec[3] = liveData->params.soc10cec[4] + 0;
liveData->params.soc10odo[3] = liveData->params.soc10odo[4] + 30;
liveData->params.soc10time[3] = liveData->params.soc10time[4] + 900;
liveData->params.soc10ced[2] = liveData->params.soc10ced[3] + 5.4;
liveData->params.soc10cec[2] = liveData->params.soc10cec[3] + 0.1;
liveData->params.soc10odo[2] = liveData->params.soc10odo[3] + 30;
liveData->params.soc10time[2] = liveData->params.soc10time[3] + 900;
liveData->params.soc10ced[1] = liveData->params.soc10ced[2] + 6.2;
liveData->params.soc10cec[1] = liveData->params.soc10cec[2] + 0.1;
liveData->params.soc10odo[1] = liveData->params.soc10odo[2] + 30;
liveData->params.soc10time[1] = liveData->params.soc10time[2] + 900;
liveData->params.soc10ced[0] = liveData->params.soc10ced[1] + 2.9;
liveData->params.soc10cec[0] = liveData->params.soc10cec[1] + 0.5;
liveData->params.soc10odo[0] = liveData->params.soc10odo[1] + 15;
liveData->params.soc10time[0] = liveData->params.soc10time[1] + 900;
}
#endif // CARKIAENIRO_CPP