Files
evDash/CarHyundaiIoniq.cpp
Michal 71dc8e8555 refactoring - simplified usage of hexToDec (#10)
* refactoring - simplified usage of hexToDec - replaced by hexToDecFromResponse

* refactoring - simplified usage of hexToDec - replaced by hexToDecFromResponse (applied to CarHyundaiIoniq.cpp)

* refactoring - simplified usage of hexToDec - replaced by hexToDecFromResponse (applied to rest)

* refactoring - simplified usage of hexToDec - replaced by hexToDecFromResponse (fix)

* refactoring - simplified usage of float(strol(liveData->responseRowMerged.substring(...))) - as liveData->decFromResponse()
2020-12-07 19:43:38 +01:00

382 lines
19 KiB
C++

#ifndef CARHYUNDAIIONIQ_CPP
#define CARHYUNDAIIONIQ_CPP
#include "CarHyundaiIoniq.h"
#define commandQueueCountHyundaiIoniq 25
#define commandQueueLoopFromHyundaiIoniq 8
/**
activateliveData->commandQueue
*/
void CarHyundaiIoniq::activateCommandQueue() {
String commandQueueHyundaiIoniq[commandQueueCountHyundaiIoniq] = {
"AT Z", // Reset all
"AT I", // Print the version ID
"AT E0", // Echo off
"AT L0", // Linefeeds off
"AT S0", // Printing of spaces on
"AT SP 6", // Select protocol to ISO 15765-4 CAN (11 bit ID, 500 kbit/s)
//"AT AL", // Allow Long (>7 byte) messages
//"AT AR", // Automatically receive
//"AT H1", // Headers on (debug only)
//"AT D1", // Display of the DLC on
//"AT CAF0", // Automatic formatting off
"AT DP",
"AT ST16",
// Loop from (HYUNDAI IONIQ)
// BMS
"ATSH7E4",
"2101", // power kw, ...
"2102", // cell voltages, screen 3 only
"2103", // cell voltages, screen 3 only
"2104", // cell voltages, screen 3 only
"2105", // soh, soc, ..
"2106", // cooling water temp
// VMCU
"ATSH7E2",
"2101", // speed, ...
"2102", // aux, ...
//"ATSH7Df",
//"2106",
//"220106",
// Aircondition
// IONIQ OK
"ATSH7B3",
"220100", // in/out temp
"220102", // coolant temp1, 2
// BCM / TPMS
// IONIQ OK
"ATSH7A0",
"22c00b", // tire pressure/temp
// CLUSTER MODULE
// IONIQ OK
"ATSH7C6",
"22B002", // odo
};
// 28kWh version
liveData->params.batteryTotalAvailableKWh = 28;
liveData->params.batModuleTempCount = 12;
// Empty and fill command queue
for (int i = 0; i < 300; i++) {
liveData->commandQueue[i] = "";
}
for (int i = 0; i < commandQueueCountHyundaiIoniq; i++) {
liveData->commandQueue[i] = commandQueueHyundaiIoniq[i];
}
liveData->commandQueueLoopFrom = commandQueueLoopFromHyundaiIoniq;
liveData->commandQueueCount = commandQueueCountHyundaiIoniq;
}
/**
parseRowMerged
*/
void CarHyundaiIoniq::parseRowMerged() {
// VMCU 7E2
if (liveData->currentAtshRequest.equals("ATSH7E2")) {
if (liveData->commandRequest.equals("2101")) {
liveData->params.speedKmh = liveData->hexToDecFromResponse(32, 36, 2, false) * 0.0155; // / 100.0 *1.609 = real to gps is 1.750
if (liveData->params.speedKmh < -99 || liveData->params.speedKmh > 200)
liveData->params.speedKmh = 0;
}
if (liveData->commandRequest.equals("2102")) {
liveData->params.auxPerc = liveData->hexToDecFromResponse(50, 52, 1, false);
liveData->params.auxCurrentAmp = - liveData->hexToDecFromResponse(46, 50, 2, true) / 1000.0;
}
}
// Cluster module 7c6
if (liveData->currentAtshRequest.equals("ATSH7C6")) {
if (liveData->commandRequest.equals("22B002")) {
liveData->params.odoKm = liveData->decFromResponse(18, 24);
}
}
// Aircon 7b3
if (liveData->currentAtshRequest.equals("ATSH7B3")) {
if (liveData->commandRequest.equals("220100")) {
liveData->params.indoorTemperature = (liveData->hexToDecFromResponse(16, 18, 1, false) / 2) - 40;
liveData->params.outdoorTemperature = (liveData->hexToDecFromResponse(18, 20, 1, false) / 2) - 40;
}
if (liveData->commandRequest.equals("220102") && liveData->responseRowMerged.substring(12, 14) == "00") {
liveData->params.coolantTemp1C = (liveData->hexToDecFromResponse(14, 16, 1, false) / 2) - 40;
liveData->params.coolantTemp2C = (liveData->hexToDecFromResponse(16, 18, 1, false) / 2) - 40;
}
}
// BMS 7e4
if (liveData->currentAtshRequest.equals("ATSH7E4")) {
if (liveData->commandRequest.equals("2101")) {
liveData->params.cumulativeEnergyChargedKWh = liveData->decFromResponse(80, 88) / 10.0;
if (liveData->params.cumulativeEnergyChargedKWhStart == -1)
liveData->params.cumulativeEnergyChargedKWhStart = liveData->params.cumulativeEnergyChargedKWh;
liveData->params.cumulativeEnergyDischargedKWh = liveData->decFromResponse(88, 96) / 10.0;
if (liveData->params.cumulativeEnergyDischargedKWhStart == -1)
liveData->params.cumulativeEnergyDischargedKWhStart = liveData->params.cumulativeEnergyDischargedKWh;
liveData->params.availableChargePower = liveData->decFromResponse(16, 20) / 100.0;
liveData->params.availableDischargePower = liveData->decFromResponse(20, 24) / 100.0;
liveData->params.isolationResistanceKOhm = liveData->hexToDecFromResponse(118, 122, 2, true);
liveData->params.batFanStatus = liveData->hexToDecFromResponse(58, 60, 2, true);
liveData->params.batFanFeedbackHz = liveData->hexToDecFromResponse(60, 62, 2, true);
liveData->params.auxVoltage = liveData->hexToDecFromResponse(62, 64, 2, true) / 10.0;
liveData->params.batPowerAmp = - liveData->hexToDecFromResponse(24, 28, 2, true) / 10.0;
liveData->params.batVoltage = liveData->hexToDecFromResponse(28, 32, 2, false) / 10.0;
liveData->params.batPowerKw = (liveData->params.batPowerAmp * liveData->params.batVoltage) / 1000.0;
if (liveData->params.batPowerKw < 1) // Reset charging start time
liveData->params.chargingStartTime = liveData->params.currentTime;
liveData->params.batPowerKwh100 = liveData->params.batPowerKw / liveData->params.speedKmh * 100;
liveData->params.batCellMaxV = liveData->hexToDecFromResponse(50, 52, 1, false) / 50.0;
liveData->params.batCellMinV = liveData->hexToDecFromResponse(54, 56, 1, false) / 50.0;
liveData->params.batModuleTempC[0] = liveData->hexToDecFromResponse(36, 38, 1, true);
liveData->params.batModuleTempC[1] = liveData->hexToDecFromResponse(38, 40, 1, true);
liveData->params.batModuleTempC[2] = liveData->hexToDecFromResponse(40, 42, 1, true);
liveData->params.batModuleTempC[3] = liveData->hexToDecFromResponse(42, 44, 1, true);
liveData->params.batModuleTempC[4] = liveData->hexToDecFromResponse(44, 46, 1, true);
//liveData->params.batTempC = liveData->hexToDecFromResponse(34, 36, 1, true);
//liveData->params.batMaxC = liveData->hexToDecFromResponse(32, 34, 1, true);
//liveData->params.batMinC = liveData->hexToDecFromResponse(34, 36, 1, true);
// This is more accurate than min/max from BMS. It's required to detect kona/eniro cold gates (min 15C is needed > 43kW charging, min 25C is needed > 58kW charging)
liveData->params.batInletC = liveData->hexToDecFromResponse(48, 50, 1, true);
if (liveData->params.speedKmh < 10 && liveData->params.batPowerKw >= 1 && liveData->params.socPerc > 0 && liveData->params.socPerc <= 100) {
if ( liveData->params.chargingGraphMinKw[int(liveData->params.socPerc)] == -100 || liveData->params.batPowerKw < liveData->params.chargingGraphMinKw[int(liveData->params.socPerc)])
liveData->params.chargingGraphMinKw[int(liveData->params.socPerc)] = liveData->params.batPowerKw;
if ( liveData->params.chargingGraphMaxKw[int(liveData->params.socPerc)] == -100 || liveData->params.batPowerKw > liveData->params.chargingGraphMaxKw[int(liveData->params.socPerc)])
liveData->params.chargingGraphMaxKw[int(liveData->params.socPerc)] = liveData->params.batPowerKw;
liveData->params.chargingGraphBatMinTempC[int(liveData->params.socPerc)] = liveData->params.batMinC;
liveData->params.chargingGraphBatMaxTempC[int(liveData->params.socPerc)] = liveData->params.batMaxC;
liveData->params.chargingGraphHeaterTempC[int(liveData->params.socPerc)] = liveData->params.batHeaterC;
}
}
// BMS 7e4
if (liveData->commandRequest.equals("2102") && liveData->responseRowMerged.substring(10, 12) == "FF") {
for (int i = 0; i < 32; i++) {
liveData->params.cellVoltage[i] = liveData->hexToDecFromResponse(12 + (i * 2), 12 + (i * 2) + 2, 1, false) / 50;
}
}
// BMS 7e4
if (liveData->commandRequest.equals("2103")) {
for (int i = 0; i < 32; i++) {
liveData->params.cellVoltage[32 + i] = liveData->hexToDecFromResponse(12 + (i * 2), 12 + (i * 2) + 2, 1, false) / 50;
}
}
// BMS 7e4
if (liveData->commandRequest.equals("2104")) {
for (int i = 0; i < 32; i++) {
liveData->params.cellVoltage[64 + i] = liveData->hexToDecFromResponse(12 + (i * 2), 12 + (i * 2) + 2, 1, false) / 50;
}
}
// BMS 7e4
if (liveData->commandRequest.equals("2105")) {
liveData->params.socPercPrevious = liveData->params.socPerc;
liveData->params.sohPerc = liveData->hexToDecFromResponse(54, 58, 2, false) / 10.0;
liveData->params.socPerc = liveData->hexToDecFromResponse(66, 68, 1, false) / 2.0;
// Remaining battery modules (tempC)
liveData->params.batModuleTempC[5] = liveData->hexToDecFromResponse(22, 24, 1, true);
liveData->params.batModuleTempC[6] = liveData->hexToDecFromResponse(24, 26, 1, true);
liveData->params.batModuleTempC[7] = liveData->hexToDecFromResponse(26, 28, 1, true);
liveData->params.batModuleTempC[8] = liveData->hexToDecFromResponse(28, 30, 1, true);
liveData->params.batModuleTempC[9] = liveData->hexToDecFromResponse(30, 32, 1, true);
liveData->params.batModuleTempC[10] = liveData->hexToDecFromResponse(32, 34, 1, true);
liveData->params.batModuleTempC[11] = liveData->hexToDecFromResponse(34, 36, 1, true);
liveData->params.batMinC = liveData->params.batMaxC = liveData->params.batModuleTempC[0];
for (uint16_t i = 1; i < liveData->params.batModuleTempCount; i++) {
if (liveData->params.batModuleTempC[i] < liveData->params.batMinC)
liveData->params.batMinC = liveData->params.batModuleTempC[i];
if (liveData->params.batModuleTempC[i] > liveData->params.batMaxC)
liveData->params.batMaxC = liveData->params.batModuleTempC[i];
}
liveData->params.batTempC = liveData->params.batMinC;
// Soc10ced table, record x0% CEC/CED table (ex. 90%->89%, 80%->79%)
if (liveData->params.socPercPrevious - liveData->params.socPerc > 0) {
byte index = (int(liveData->params.socPerc) == 4) ? 0 : (int)(liveData->params.socPerc / 10) + 1;
if ((int(liveData->params.socPerc) % 10 == 9 || int(liveData->params.socPerc) == 4) && liveData->params.soc10ced[index] == -1) {
liveData->params.soc10ced[index] = liveData->params.cumulativeEnergyDischargedKWh;
liveData->params.soc10cec[index] = liveData->params.cumulativeEnergyChargedKWh;
liveData->params.soc10odo[index] = liveData->params.odoKm;
liveData->params.soc10time[index] = liveData->params.currentTime;
}
}
liveData->params.batHeaterC = liveData->hexToDecFromResponse(50, 52, 1, true);
//
for (int i = 30; i < 32; i++) { // ai/aj position
liveData->params.cellVoltage[96 - 30 + i] = -1;
}
}
// BMS 7e4
// IONIQ FAILED
if (liveData->commandRequest.equals("2106")) {
liveData->params.coolingWaterTempC = liveData->hexToDecFromResponse(14, 16, 1, false);
}
}
// TPMS 7a0
if (liveData->currentAtshRequest.equals("ATSH7A0")) {
if (liveData->commandRequest.equals("22c00b")) {
liveData->params.tireFrontLeftPressureBar = liveData->hexToDecFromResponse(14, 16, 2, false) / 72.51886900361; // === OK Valid *0.2 / 14.503773800722
liveData->params.tireFrontRightPressureBar = liveData->hexToDecFromResponse(22, 24, 2, false) / 72.51886900361; // === OK Valid *0.2 / 14.503773800722
liveData->params.tireRearRightPressureBar = liveData->hexToDecFromResponse(30, 32, 2, false) / 72.51886900361; // === OK Valid *0.2 / 14.503773800722
liveData->params.tireRearLeftPressureBar = liveData->hexToDecFromResponse(38, 40, 2, false) / 72.51886900361; // === OK Valid *0.2 / 14.503773800722
liveData->params.tireFrontLeftTempC = liveData->hexToDecFromResponse(16, 18, 2, false) - 50; // === OK Valid
liveData->params.tireFrontRightTempC = liveData->hexToDecFromResponse(24, 26, 2, false) - 50; // === OK Valid
liveData->params.tireRearRightTempC = liveData->hexToDecFromResponse(32, 34, 2, false) - 50; // === OK Valid
liveData->params.tireRearLeftTempC = liveData->hexToDecFromResponse(40, 42, 2, false) - 50; // === OK Valid
}
}
}
/**
loadTestData
*/
void CarHyundaiIoniq::loadTestData() {
// VMCU ATSH7E2
liveData->currentAtshRequest = "ATSH7E2";
// 2101
liveData->commandRequest = "2101";
liveData->responseRowMerged = "6101FFE0000009211222062F03000000001D7734";
parseRowMerged();
// 2102
liveData->commandRequest = "2102";
liveData->responseRowMerged = "6102FF80000001010000009315B2888D390B08618B683900000000";
parseRowMerged();
// "ATSH7DF",
liveData->currentAtshRequest = "ATSH7DF";
// AIRCON / ACU ATSH7B3
liveData->currentAtshRequest = "ATSH7B3";
// 220100
liveData->commandRequest = "220100";
liveData->responseRowMerged = "6201007E5007C8FF8A876A011010FFFF10FF10FFFFFFFFFFFFFFFFFF2EEF767D00FFFF00FFFF000000";
parseRowMerged();
// 220102
liveData->commandRequest = "220102";
liveData->responseRowMerged = "620102FF800000A3950000000000002600000000";
parseRowMerged();
// BMS ATSH7E4
liveData->currentAtshRequest = "ATSH7E4";
// 220101
liveData->commandRequest = "2101";
liveData->responseRowMerged = "6101FFFFFFFF5026482648A3FFC30D9E181717171718170019B50FB501000090000142230001425F0000771B00007486007815D809015C0000000003E800";
parseRowMerged();
// 220102
liveData->commandRequest = "2102";
liveData->responseRowMerged = "6102FFFFFFFFB5B5B5B5B5B5B5B5B5B5B5B5B5B5B5B5B5B5B5B5B5B5B5B5B5B5B5B5B5B5B5B5000000";
parseRowMerged();
// 220103
liveData->commandRequest = "2103";
liveData->responseRowMerged = "6103FFFFFFFFB5B5B5B5B5B5B5B5B5B5B5B5B5B5B5B5B5B5B5B5B5B5B5B5B5B5B5B5B5B5B5B5000000";
parseRowMerged();
// 220104
liveData->commandRequest = "2104";
liveData->responseRowMerged = "6104FFFFFFFFB5B5B5B5B5B5B5B5B5B5B5B5B5B5B5B5B5B5B5B5B5B5B5B5B5B5B5B5B5B5B5B5000000";
parseRowMerged();
// 220105
liveData->commandRequest = "2105";
liveData->responseRowMerged = "6105FFFFFFFF00000000001717171817171726482648000150181703E81A03E801520029000000000000000000000000";
parseRowMerged();
// 220106
liveData->commandRequest = "2106";
liveData->responseRowMerged = "7F2112"; // n/a on ioniq
parseRowMerged();
// BCM / TPMS ATSH7A0
liveData->currentAtshRequest = "ATSH7A0";
// 22c00b
liveData->commandRequest = "22c00b";
liveData->responseRowMerged = "62C00BFFFF0000B9510100B9510100B84F0100B54F0100AAAAAAAA";
parseRowMerged();
// ATSH7C6
liveData->currentAtshRequest = "ATSH7C6";
// 22b002
liveData->commandRequest = "22b002";
liveData->responseRowMerged = "62B002E000000000AD003D2D0000000000000000";
parseRowMerged();
/* liveData->params.batModule01TempC = 28;
liveData->params.batModule02TempC = 29;
liveData->params.batModule03TempC = 28;
liveData->params.batModule04TempC = 30;
//liveData->params.batTempC = liveData->hexToDecFromResponse(36, 38, 1, true);
//liveData->params.batMaxC = liveData->hexToDecFromResponse(34, 36, 1, true);
//liveData->params.batMinC = liveData->hexToDecFromResponse(36, 38, 1, true);
// This is more accurate than min/max from BMS. It's required to detect kona/eniro cold gates (min 15C is needed > 43kW charging, min 25C is needed > 58kW charging)
liveData->params.batMinC = liveData->params.batMaxC = liveData->params.batModule01TempC;
liveData->params.batMinC = (liveData->params.batModule02TempC < liveData->params.batMinC) ? liveData->params.batModule02TempC : liveData->params.batMinC ;
liveData->params.batMinC = (liveData->params.batModule03TempC < liveData->params.batMinC) ? liveData->params.batModule03TempC : liveData->params.batMinC ;
liveData->params.batMinC = (liveData->params.batModule04TempC < liveData->params.batMinC) ? liveData->params.batModule04TempC : liveData->params.batMinC ;
liveData->params.batMaxC = (liveData->params.batModule02TempC > liveData->params.batMaxC) ? liveData->params.batModule02TempC : liveData->params.batMaxC ;
liveData->params.batMaxC = (liveData->params.batModule03TempC > liveData->params.batMaxC) ? liveData->params.batModule03TempC : liveData->params.batMaxC ;
liveData->params.batMaxC = (liveData->params.batModule04TempC > liveData->params.batMaxC) ? liveData->params.batModule04TempC : liveData->params.batMaxC ;
liveData->params.batTempC = liveData->params.batMinC;
//
liveData->params.soc10ced[10] = 2200;
liveData->params.soc10cec[10] = 2500;
liveData->params.soc10odo[10] = 13000;
liveData->params.soc10time[10] = 13000;
liveData->params.soc10ced[9] = liveData->params.soc10ced[10] + 6.4;
liveData->params.soc10cec[9] = liveData->params.soc10cec[10] + 0;
liveData->params.soc10odo[9] = liveData->params.soc10odo[10] + 30;
liveData->params.soc10time[9] = liveData->params.soc10time[10] + 900;
liveData->params.soc10ced[8] = liveData->params.soc10ced[9] + 6.8;
liveData->params.soc10cec[8] = liveData->params.soc10cec[9] + 0;
liveData->params.soc10odo[8] = liveData->params.soc10odo[9] + 30;
liveData->params.soc10time[8] = liveData->params.soc10time[9] + 900;
liveData->params.soc10ced[7] = liveData->params.soc10ced[8] + 7.2;
liveData->params.soc10cec[7] = liveData->params.soc10cec[8] + 0.6;
liveData->params.soc10odo[7] = liveData->params.soc10odo[8] + 30;
liveData->params.soc10time[7] = liveData->params.soc10time[8] + 900;
liveData->params.soc10ced[6] = liveData->params.soc10ced[7] + 6.7;
liveData->params.soc10cec[6] = liveData->params.soc10cec[7] + 0;
liveData->params.soc10odo[6] = liveData->params.soc10odo[7] + 30;
liveData->params.soc10time[6] = liveData->params.soc10time[7] + 900;
liveData->params.soc10ced[5] = liveData->params.soc10ced[6] + 6.7;
liveData->params.soc10cec[5] = liveData->params.soc10cec[6] + 0;
liveData->params.soc10odo[5] = liveData->params.soc10odo[6] + 30;
liveData->params.soc10time[5] = liveData->params.soc10time[6] + 900;
liveData->params.soc10ced[4] = liveData->params.soc10ced[5] + 6.4;
liveData->params.soc10cec[4] = liveData->params.soc10cec[5] + 0.3;
liveData->params.soc10odo[4] = liveData->params.soc10odo[5] + 30;
liveData->params.soc10time[4] = liveData->params.soc10time[5] + 900;
liveData->params.soc10ced[3] = liveData->params.soc10ced[4] + 6.4;
liveData->params.soc10cec[3] = liveData->params.soc10cec[4] + 0;
liveData->params.soc10odo[3] = liveData->params.soc10odo[4] + 30;
liveData->params.soc10time[3] = liveData->params.soc10time[4] + 900;
liveData->params.soc10ced[2] = liveData->params.soc10ced[3] + 5.4;
liveData->params.soc10cec[2] = liveData->params.soc10cec[3] + 0.1;
liveData->params.soc10odo[2] = liveData->params.soc10odo[3] + 30;
liveData->params.soc10time[2] = liveData->params.soc10time[3] + 900;
liveData->params.soc10ced[1] = liveData->params.soc10ced[2] + 6.2;
liveData->params.soc10cec[1] = liveData->params.soc10cec[2] + 0.1;
liveData->params.soc10odo[1] = liveData->params.soc10odo[2] + 30;
liveData->params.soc10time[1] = liveData->params.soc10time[2] + 900;
liveData->params.soc10ced[0] = liveData->params.soc10ced[1] + 2.9;
liveData->params.soc10cec[0] = liveData->params.soc10cec[1] + 0.5;
liveData->params.soc10odo[0] = liveData->params.soc10odo[1] + 15;
liveData->params.soc10time[0] = liveData->params.soc10time[1] + 900;
*/
}
#endif //CARHYUNDAIIONIQ_CPP