Refactoring

This commit is contained in:
Lubos Petrovic
2020-11-30 23:27:42 +01:00
parent 0bfac0e76f
commit f3d64e938d
26 changed files with 2137 additions and 2073 deletions

0
BoardInterface.cpp Normal file
View File

0
BoardInterface.h Normal file
View File

0
BoardM5stackCore.cpp Normal file
View File

33
BoardM5stackCore.h Normal file
View File

@@ -0,0 +1,33 @@
// Setup for m5stack core
#define USER_SETUP_LOADED 1
#define SPI_FREQUENCY 27000000
#define SPI_TOUCH_FREQUENCY 2500000
#ifdef BOARD_M5STACK_CORE
#define USER_SETUP_LOADED 1
#define ILI9341_DRIVER
#define M5STACK
#define TFT_MISO 19
#define TFT_MOSI 23
#define TFT_SCLK 18
#define TFT_CS 14 // Chip select control pin
#define TFT_DC 27 // Data Command control pin
#define TFT_RST 33 // Reset pin (could connect to Arduino RESET pin)
#define TFT_BL 32 // LED back-light
#define SPI_FREQUENCY 27000000
#define SPI_READ_FREQUENCY 5000000
#define SPEAKER_PIN 25
#define INVERT_DISPLAY
#define BUTTON_LEFT 37
#define BUTTON_MIDDLE 38
#define BUTTON_RIGHT 39
#define SD_CS 4
#define SD_MOSI 23
#define SD_MISO 19
#define SD_SCLK 18
#endif // BOARD_M5STACK_CORE

0
BoardTtgoT4v13.cpp Normal file
View File

32
BoardTtgoT4v13.h Normal file
View File

@@ -0,0 +1,32 @@
// Setup for TTGO T4 v13
#define USER_SETUP_LOADED 1
#define SPI_FREQUENCY 27000000
#define SPI_TOUCH_FREQUENCY 2500000
#ifdef BOARD_TTGO_T4
#define ILI9341_DRIVER
#define TFT_MISO 12
#define TFT_MOSI 23
#define TFT_SCLK 18
#define TFT_CS 27
#define TFT_DC 32
#define TFT_RST 5
//#define TFT_BACKLIGHT_ON HIGH
#define TFT_BL 4
#define USE_HSPI_PORT
//#define SPI_FREQUENCY 40000000 // Maximum for ILI9341
#define SPI_READ_FREQUENCY 6000000 // 6 MHz is the maximum SPI read speed for the ST7789V
#define SD_CS 13
#define SD_MOSI 15
#define SD_MISO 2
#define SD_SCLK 14
#define BUTTON_LEFT 38
#define BUTTON_MIDDLE 37
#define BUTTON_RIGHT 39
#endif // BOARD_TTGO_T4

381
CarHyundaiIoniq.cpp Normal file
View File

@@ -0,0 +1,381 @@
#ifndef CARHYUNDAIIONIQ_CPP
#define CARHYUNDAIIONIQ_CPP
#include "CarHyundaiIoniq.h"
#define commandQueueCountHyundaiIoniq 25
#define commandQueueLoopFromHyundaiIoniq 8
/**
activatethis->liveData->commandQueue
*/
void CarHyundaiIoniq::activateCommandQueue() {
String commandQueueHyundaiIoniq[commandQueueCountHyundaiIoniq] = {
"AT Z", // Reset all
"AT I", // Print the version ID
"AT E0", // Echo off
"AT L0", // Linefeeds off
"AT S0", // Printing of spaces on
"AT SP 6", // Select protocol to ISO 15765-4 CAN (11 bit ID, 500 kbit/s)
//"AT AL", // Allow Long (>7 byte) messages
//"AT AR", // Automatically receive
//"AT H1", // Headers on (debug only)
//"AT D1", // Display of the DLC on
//"AT CAF0", // Automatic formatting off
"AT DP",
"AT ST16",
// Loop from (HYUNDAI IONIQ)
// BMS
"ATSH7E4",
"2101", // power kw, ...
"2102", // cell voltages, screen 3 only
"2103", // cell voltages, screen 3 only
"2104", // cell voltages, screen 3 only
"2105", // soh, soc, ..
"2106", // cooling water temp
// VMCU
"ATSH7E2",
"2101", // speed, ...
"2102", // aux, ...
//"ATSH7Df",
//"2106",
//"220106",
// Aircondition
// IONIQ OK
"ATSH7B3",
"220100", // in/out temp
"220102", // coolant temp1, 2
// BCM / TPMS
// IONIQ OK
"ATSH7A0",
"22c00b", // tire pressure/temp
// CLUSTER MODULE
// IONIQ OK
"ATSH7C6",
"22B002", // odo
};
// 28kWh version
this->liveData->params.batteryTotalAvailableKWh = 28;
this->liveData->params.batModuleTempCount = 12;
// Empty and fill command queue
for (int i = 0; i < 300; i++) {
this->liveData->commandQueue[i] = "";
}
for (int i = 0; i < commandQueueCountHyundaiIoniq; i++) {
this->liveData->commandQueue[i] = commandQueueHyundaiIoniq[i];
}
this->liveData->commandQueueLoopFrom = commandQueueLoopFromHyundaiIoniq;
this->liveData->commandQueueCount = commandQueueCountHyundaiIoniq;
}
/**
parseRowMerged
*/
void CarHyundaiIoniq::parseRowMerged() {
// VMCU 7E2
if (this->liveData->currentAtshRequest.equals("ATSH7E2")) {
if (this->liveData->commandRequest.equals("2101")) {
this->liveData->params.speedKmh = this->liveData->hexToDec(this->liveData->responseRowMerged.substring(32, 36).c_str(), 2, false) * 0.0155; // / 100.0 *1.609 = real to gps is 1.750
if (this->liveData->params.speedKmh < -99 || this->liveData->params.speedKmh > 200)
this->liveData->params.speedKmh = 0;
}
if (this->liveData->commandRequest.equals("2102")) {
this->liveData->params.auxPerc = this->liveData->hexToDec(this->liveData->responseRowMerged.substring(50, 52).c_str(), 1, false);
this->liveData->params.auxCurrentAmp = - this->liveData->hexToDec(this->liveData->responseRowMerged.substring(46, 50).c_str(), 2, true) / 1000.0;
}
}
// Cluster module 7c6
if (this->liveData->currentAtshRequest.equals("ATSH7C6")) {
if (this->liveData->commandRequest.equals("22B002")) {
this->liveData->params.odoKm = float(strtol(this->liveData->responseRowMerged.substring(18, 24).c_str(), 0, 16));
}
}
// Aircon 7b3
if (this->liveData->currentAtshRequest.equals("ATSH7B3")) {
if (this->liveData->commandRequest.equals("220100")) {
this->liveData->params.indoorTemperature = (this->liveData->hexToDec(this->liveData->responseRowMerged.substring(16, 18).c_str(), 1, false) / 2) - 40;
this->liveData->params.outdoorTemperature = (this->liveData->hexToDec(this->liveData->responseRowMerged.substring(18, 20).c_str(), 1, false) / 2) - 40;
}
if (this->liveData->commandRequest.equals("220102") && this->liveData->responseRowMerged.substring(12, 14) == "00") {
this->liveData->params.coolantTemp1C = (this->liveData->hexToDec(this->liveData->responseRowMerged.substring(14, 16).c_str(), 1, false) / 2) - 40;
this->liveData->params.coolantTemp2C = (this->liveData->hexToDec(this->liveData->responseRowMerged.substring(16, 18).c_str(), 1, false) / 2) - 40;
}
}
// BMS 7e4
if (this->liveData->currentAtshRequest.equals("ATSH7E4")) {
if (this->liveData->commandRequest.equals("2101")) {
this->liveData->params.cumulativeEnergyChargedKWh = float(strtol(this->liveData->responseRowMerged.substring(80, 88).c_str(), 0, 16)) / 10.0;
if (this->liveData->params.cumulativeEnergyChargedKWhStart == -1)
this->liveData->params.cumulativeEnergyChargedKWhStart = this->liveData->params.cumulativeEnergyChargedKWh;
this->liveData->params.cumulativeEnergyDischargedKWh = float(strtol(this->liveData->responseRowMerged.substring(88, 96).c_str(), 0, 16)) / 10.0;
if (this->liveData->params.cumulativeEnergyDischargedKWhStart == -1)
this->liveData->params.cumulativeEnergyDischargedKWhStart = this->liveData->params.cumulativeEnergyDischargedKWh;
this->liveData->params.availableChargePower = float(strtol(this->liveData->responseRowMerged.substring(16, 20).c_str(), 0, 16)) / 100.0;
this->liveData->params.availableDischargePower = float(strtol(this->liveData->responseRowMerged.substring(20, 24).c_str(), 0, 16)) / 100.0;
this->liveData->params.isolationResistanceKOhm = this->liveData->hexToDec(this->liveData->responseRowMerged.substring(118, 122).c_str(), 2, true);
this->liveData->params.batFanStatus = this->liveData->hexToDec(this->liveData->responseRowMerged.substring(58, 60).c_str(), 2, true);
this->liveData->params.batFanFeedbackHz = this->liveData->hexToDec(this->liveData->responseRowMerged.substring(60, 62).c_str(), 2, true);
this->liveData->params.auxVoltage = this->liveData->hexToDec(this->liveData->responseRowMerged.substring(62, 64).c_str(), 2, true) / 10.0;
this->liveData->params.batPowerAmp = - this->liveData->hexToDec(this->liveData->responseRowMerged.substring(24, 28).c_str(), 2, true) / 10.0;
this->liveData->params.batVoltage = this->liveData->hexToDec(this->liveData->responseRowMerged.substring(28, 32).c_str(), 2, false) / 10.0;
this->liveData->params.batPowerKw = (this->liveData->params.batPowerAmp * this->liveData->params.batVoltage) / 1000.0;
if (this->liveData->params.batPowerKw < 1) // Reset charging start time
this->liveData->params.chargingStartTime = this->liveData->params.currentTime;
this->liveData->params.batPowerKwh100 = this->liveData->params.batPowerKw / this->liveData->params.speedKmh * 100;
this->liveData->params.batCellMaxV = this->liveData->hexToDec(this->liveData->responseRowMerged.substring(50, 52).c_str(), 1, false) / 50.0;
this->liveData->params.batCellMinV = this->liveData->hexToDec(this->liveData->responseRowMerged.substring(54, 56).c_str(), 1, false) / 50.0;
this->liveData->params.batModuleTempC[0] = this->liveData->hexToDec(this->liveData->responseRowMerged.substring(36, 38).c_str(), 1, true);
this->liveData->params.batModuleTempC[1] = this->liveData->hexToDec(this->liveData->responseRowMerged.substring(38, 40).c_str(), 1, true);
this->liveData->params.batModuleTempC[2] = this->liveData->hexToDec(this->liveData->responseRowMerged.substring(40, 42).c_str(), 1, true);
this->liveData->params.batModuleTempC[3] = this->liveData->hexToDec(this->liveData->responseRowMerged.substring(42, 44).c_str(), 1, true);
this->liveData->params.batModuleTempC[4] = this->liveData->hexToDec(this->liveData->responseRowMerged.substring(44, 46).c_str(), 1, true);
//this->liveData->params.batTempC = this->liveData->hexToDec(this->liveData->responseRowMerged.substring(34, 36).c_str(), 1, true);
//this->liveData->params.batMaxC = this->liveData->hexToDec(this->liveData->responseRowMerged.substring(32, 34).c_str(), 1, true);
//this->liveData->params.batMinC = this->liveData->hexToDec(this->liveData->responseRowMerged.substring(34, 36).c_str(), 1, true);
// This is more accurate than min/max from BMS. It's required to detect kona/eniro cold gates (min 15C is needed > 43kW charging, min 25C is needed > 58kW charging)
this->liveData->params.batInletC = this->liveData->hexToDec(this->liveData->responseRowMerged.substring(48, 50).c_str(), 1, true);
if (this->liveData->params.speedKmh < 10 && this->liveData->params.batPowerKw >= 1 && this->liveData->params.socPerc > 0 && this->liveData->params.socPerc <= 100) {
if ( this->liveData->params.chargingGraphMinKw[int(this->liveData->params.socPerc)] == -100 || this->liveData->params.batPowerKw < this->liveData->params.chargingGraphMinKw[int(this->liveData->params.socPerc)])
this->liveData->params.chargingGraphMinKw[int(this->liveData->params.socPerc)] = this->liveData->params.batPowerKw;
if ( this->liveData->params.chargingGraphMaxKw[int(this->liveData->params.socPerc)] == -100 || this->liveData->params.batPowerKw > this->liveData->params.chargingGraphMaxKw[int(this->liveData->params.socPerc)])
this->liveData->params.chargingGraphMaxKw[int(this->liveData->params.socPerc)] = this->liveData->params.batPowerKw;
this->liveData->params.chargingGraphBatMinTempC[int(this->liveData->params.socPerc)] = this->liveData->params.batMinC;
this->liveData->params.chargingGraphBatMaxTempC[int(this->liveData->params.socPerc)] = this->liveData->params.batMaxC;
this->liveData->params.chargingGraphHeaterTempC[int(this->liveData->params.socPerc)] = this->liveData->params.batHeaterC;
}
}
// BMS 7e4
if (this->liveData->commandRequest.equals("2102") && this->liveData->responseRowMerged.substring(10, 12) == "FF") {
for (int i = 0; i < 32; i++) {
this->liveData->params.cellVoltage[i] = this->liveData->hexToDec(this->liveData->responseRowMerged.substring(12 + (i * 2), 12 + (i * 2) + 2).c_str(), 1, false) / 50;
}
}
// BMS 7e4
if (this->liveData->commandRequest.equals("2103")) {
for (int i = 0; i < 32; i++) {
this->liveData->params.cellVoltage[32 + i] = this->liveData->hexToDec(this->liveData->responseRowMerged.substring(12 + (i * 2), 12 + (i * 2) + 2).c_str(), 1, false) / 50;
}
}
// BMS 7e4
if (this->liveData->commandRequest.equals("2104")) {
for (int i = 0; i < 32; i++) {
this->liveData->params.cellVoltage[64 + i] = this->liveData->hexToDec(this->liveData->responseRowMerged.substring(12 + (i * 2), 12 + (i * 2) + 2).c_str(), 1, false) / 50;
}
}
// BMS 7e4
if (this->liveData->commandRequest.equals("2105")) {
this->liveData->params.socPercPrevious = this->liveData->params.socPerc;
this->liveData->params.sohPerc = this->liveData->hexToDec(this->liveData->responseRowMerged.substring(54, 58).c_str(), 2, false) / 10.0;
this->liveData->params.socPerc = this->liveData->hexToDec(this->liveData->responseRowMerged.substring(66, 68).c_str(), 1, false) / 2.0;
// Remaining battery modules (tempC)
this->liveData->params.batModuleTempC[5] = this->liveData->hexToDec(this->liveData->responseRowMerged.substring(22, 24).c_str(), 1, true);
this->liveData->params.batModuleTempC[6] = this->liveData->hexToDec(this->liveData->responseRowMerged.substring(24, 26).c_str(), 1, true);
this->liveData->params.batModuleTempC[7] = this->liveData->hexToDec(this->liveData->responseRowMerged.substring(26, 28).c_str(), 1, true);
this->liveData->params.batModuleTempC[8] = this->liveData->hexToDec(this->liveData->responseRowMerged.substring(28, 30).c_str(), 1, true);
this->liveData->params.batModuleTempC[9] = this->liveData->hexToDec(this->liveData->responseRowMerged.substring(30, 32).c_str(), 1, true);
this->liveData->params.batModuleTempC[10] = this->liveData->hexToDec(this->liveData->responseRowMerged.substring(32, 34).c_str(), 1, true);
this->liveData->params.batModuleTempC[11] = this->liveData->hexToDec(this->liveData->responseRowMerged.substring(34, 36).c_str(), 1, true);
this->liveData->params.batMinC = this->liveData->params.batMaxC = this->liveData->params.batModuleTempC[0];
for (uint16_t i = 1; i < this->liveData->params.batModuleTempCount; i++) {
if (this->liveData->params.batModuleTempC[i] < this->liveData->params.batMinC)
this->liveData->params.batMinC = this->liveData->params.batModuleTempC[i];
if (this->liveData->params.batModuleTempC[i] > this->liveData->params.batMaxC)
this->liveData->params.batMaxC = this->liveData->params.batModuleTempC[i];
}
this->liveData->params.batTempC = this->liveData->params.batMinC;
// Soc10ced table, record x0% CEC/CED table (ex. 90%->89%, 80%->79%)
if (this->liveData->params.socPercPrevious - this->liveData->params.socPerc > 0) {
byte index = (int(this->liveData->params.socPerc) == 4) ? 0 : (int)(this->liveData->params.socPerc / 10) + 1;
if ((int(this->liveData->params.socPerc) % 10 == 9 || int(this->liveData->params.socPerc) == 4) && this->liveData->params.soc10ced[index] == -1) {
this->liveData->params.soc10ced[index] = this->liveData->params.cumulativeEnergyDischargedKWh;
this->liveData->params.soc10cec[index] = this->liveData->params.cumulativeEnergyChargedKWh;
this->liveData->params.soc10odo[index] = this->liveData->params.odoKm;
this->liveData->params.soc10time[index] = this->liveData->params.currentTime;
}
}
this->liveData->params.batHeaterC = this->liveData->hexToDec(this->liveData->responseRowMerged.substring(50, 52).c_str(), 1, true);
//
for (int i = 30; i < 32; i++) { // ai/aj position
this->liveData->params.cellVoltage[96 - 30 + i] = -1;
}
}
// BMS 7e4
// IONIQ FAILED
if (this->liveData->commandRequest.equals("2106")) {
this->liveData->params.coolingWaterTempC = this->liveData->hexToDec(this->liveData->responseRowMerged.substring(14, 16).c_str(), 1, false);
}
}
// TPMS 7a0
if (this->liveData->currentAtshRequest.equals("ATSH7A0")) {
if (this->liveData->commandRequest.equals("22c00b")) {
this->liveData->params.tireFrontLeftPressureBar = this->liveData->hexToDec(this->liveData->responseRowMerged.substring(14, 16).c_str(), 2, false) / 72.51886900361; // === OK Valid *0.2 / 14.503773800722
this->liveData->params.tireFrontRightPressureBar = this->liveData->hexToDec(this->liveData->responseRowMerged.substring(22, 24).c_str(), 2, false) / 72.51886900361; // === OK Valid *0.2 / 14.503773800722
this->liveData->params.tireRearRightPressureBar = this->liveData->hexToDec(this->liveData->responseRowMerged.substring(30, 32).c_str(), 2, false) / 72.51886900361; // === OK Valid *0.2 / 14.503773800722
this->liveData->params.tireRearLeftPressureBar = this->liveData->hexToDec(this->liveData->responseRowMerged.substring(38, 40).c_str(), 2, false) / 72.51886900361; // === OK Valid *0.2 / 14.503773800722
this->liveData->params.tireFrontLeftTempC = this->liveData->hexToDec(this->liveData->responseRowMerged.substring(16, 18).c_str(), 2, false) - 50; // === OK Valid
this->liveData->params.tireFrontRightTempC = this->liveData->hexToDec(this->liveData->responseRowMerged.substring(24, 26).c_str(), 2, false) - 50; // === OK Valid
this->liveData->params.tireRearRightTempC = this->liveData->hexToDec(this->liveData->responseRowMerged.substring(32, 34).c_str(), 2, false) - 50; // === OK Valid
this->liveData->params.tireRearLeftTempC = this->liveData->hexToDec(this->liveData->responseRowMerged.substring(40, 42).c_str(), 2, false) - 50; // === OK Valid
}
}
}
/**
loadTestData
*/
void CarHyundaiIoniq::loadTestData() {
// VMCU ATSH7E2
this->liveData->currentAtshRequest = "ATSH7E2";
// 2101
this->liveData->commandRequest = "2101";
this->liveData->responseRowMerged = "6101FFE0000009211222062F03000000001D7734";
this->parseRowMerged();
// 2102
this->liveData->commandRequest = "2102";
this->liveData->responseRowMerged = "6102FF80000001010000009315B2888D390B08618B683900000000";
this->parseRowMerged();
// "ATSH7DF",
this->liveData->currentAtshRequest = "ATSH7DF";
// AIRCON / ACU ATSH7B3
this->liveData->currentAtshRequest = "ATSH7B3";
// 220100
this->liveData->commandRequest = "220100";
this->liveData->responseRowMerged = "6201007E5007C8FF8A876A011010FFFF10FF10FFFFFFFFFFFFFFFFFF2EEF767D00FFFF00FFFF000000";
this->parseRowMerged();
// 220102
this->liveData->commandRequest = "220102";
this->liveData->responseRowMerged = "620102FF800000A3950000000000002600000000";
this->parseRowMerged();
// BMS ATSH7E4
this->liveData->currentAtshRequest = "ATSH7E4";
// 220101
this->liveData->commandRequest = "2101";
this->liveData->responseRowMerged = "6101FFFFFFFF5026482648A3FFC30D9E181717171718170019B50FB501000090000142230001425F0000771B00007486007815D809015C0000000003E800";
this->parseRowMerged();
// 220102
this->liveData->commandRequest = "2102";
this->liveData->responseRowMerged = "6102FFFFFFFFB5B5B5B5B5B5B5B5B5B5B5B5B5B5B5B5B5B5B5B5B5B5B5B5B5B5B5B5B5B5B5B5000000";
this->parseRowMerged();
// 220103
this->liveData->commandRequest = "2103";
this->liveData->responseRowMerged = "6103FFFFFFFFB5B5B5B5B5B5B5B5B5B5B5B5B5B5B5B5B5B5B5B5B5B5B5B5B5B5B5B5B5B5B5B5000000";
this->parseRowMerged();
// 220104
this->liveData->commandRequest = "2104";
this->liveData->responseRowMerged = "6104FFFFFFFFB5B5B5B5B5B5B5B5B5B5B5B5B5B5B5B5B5B5B5B5B5B5B5B5B5B5B5B5B5B5B5B5000000";
this->parseRowMerged();
// 220105
this->liveData->commandRequest = "2105";
this->liveData->responseRowMerged = "6105FFFFFFFF00000000001717171817171726482648000150181703E81A03E801520029000000000000000000000000";
this->parseRowMerged();
// 220106
this->liveData->commandRequest = "2106";
this->liveData->responseRowMerged = "7F2112"; // n/a on ioniq
this->parseRowMerged();
// BCM / TPMS ATSH7A0
this->liveData->currentAtshRequest = "ATSH7A0";
// 22c00b
this->liveData->commandRequest = "22c00b";
this->liveData->responseRowMerged = "62C00BFFFF0000B9510100B9510100B84F0100B54F0100AAAAAAAA";
this->parseRowMerged();
// ATSH7C6
this->liveData->currentAtshRequest = "ATSH7C6";
// 22b002
this->liveData->commandRequest = "22b002";
this->liveData->responseRowMerged = "62B002E000000000AD003D2D0000000000000000";
this->parseRowMerged();
/* this->liveData->params.batModule01TempC = 28;
this->liveData->params.batModule02TempC = 29;
this->liveData->params.batModule03TempC = 28;
this->liveData->params.batModule04TempC = 30;
//this->liveData->params.batTempC = this->liveData->hexToDec(this->liveData->responseRowMerged.substring(36, 38).c_str(), 1, true);
//this->liveData->params.batMaxC = this->liveData->hexToDec(this->liveData->responseRowMerged.substring(34, 36).c_str(), 1, true);
//this->liveData->params.batMinC = this->liveData->hexToDec(this->liveData->responseRowMerged.substring(36, 38).c_str(), 1, true);
// This is more accurate than min/max from BMS. It's required to detect kona/eniro cold gates (min 15C is needed > 43kW charging, min 25C is needed > 58kW charging)
this->liveData->params.batMinC = this->liveData->params.batMaxC = this->liveData->params.batModule01TempC;
this->liveData->params.batMinC = (this->liveData->params.batModule02TempC < this->liveData->params.batMinC) ? this->liveData->params.batModule02TempC : this->liveData->params.batMinC ;
this->liveData->params.batMinC = (this->liveData->params.batModule03TempC < this->liveData->params.batMinC) ? this->liveData->params.batModule03TempC : this->liveData->params.batMinC ;
this->liveData->params.batMinC = (this->liveData->params.batModule04TempC < this->liveData->params.batMinC) ? this->liveData->params.batModule04TempC : this->liveData->params.batMinC ;
this->liveData->params.batMaxC = (this->liveData->params.batModule02TempC > this->liveData->params.batMaxC) ? this->liveData->params.batModule02TempC : this->liveData->params.batMaxC ;
this->liveData->params.batMaxC = (this->liveData->params.batModule03TempC > this->liveData->params.batMaxC) ? this->liveData->params.batModule03TempC : this->liveData->params.batMaxC ;
this->liveData->params.batMaxC = (this->liveData->params.batModule04TempC > this->liveData->params.batMaxC) ? this->liveData->params.batModule04TempC : this->liveData->params.batMaxC ;
this->liveData->params.batTempC = this->liveData->params.batMinC;
//
this->liveData->params.soc10ced[10] = 2200;
this->liveData->params.soc10cec[10] = 2500;
this->liveData->params.soc10odo[10] = 13000;
this->liveData->params.soc10time[10] = 13000;
this->liveData->params.soc10ced[9] = this->liveData->params.soc10ced[10] + 6.4;
this->liveData->params.soc10cec[9] = this->liveData->params.soc10cec[10] + 0;
this->liveData->params.soc10odo[9] = this->liveData->params.soc10odo[10] + 30;
this->liveData->params.soc10time[9] = this->liveData->params.soc10time[10] + 900;
this->liveData->params.soc10ced[8] = this->liveData->params.soc10ced[9] + 6.8;
this->liveData->params.soc10cec[8] = this->liveData->params.soc10cec[9] + 0;
this->liveData->params.soc10odo[8] = this->liveData->params.soc10odo[9] + 30;
this->liveData->params.soc10time[8] = this->liveData->params.soc10time[9] + 900;
this->liveData->params.soc10ced[7] = this->liveData->params.soc10ced[8] + 7.2;
this->liveData->params.soc10cec[7] = this->liveData->params.soc10cec[8] + 0.6;
this->liveData->params.soc10odo[7] = this->liveData->params.soc10odo[8] + 30;
this->liveData->params.soc10time[7] = this->liveData->params.soc10time[8] + 900;
this->liveData->params.soc10ced[6] = this->liveData->params.soc10ced[7] + 6.7;
this->liveData->params.soc10cec[6] = this->liveData->params.soc10cec[7] + 0;
this->liveData->params.soc10odo[6] = this->liveData->params.soc10odo[7] + 30;
this->liveData->params.soc10time[6] = this->liveData->params.soc10time[7] + 900;
this->liveData->params.soc10ced[5] = this->liveData->params.soc10ced[6] + 6.7;
this->liveData->params.soc10cec[5] = this->liveData->params.soc10cec[6] + 0;
this->liveData->params.soc10odo[5] = this->liveData->params.soc10odo[6] + 30;
this->liveData->params.soc10time[5] = this->liveData->params.soc10time[6] + 900;
this->liveData->params.soc10ced[4] = this->liveData->params.soc10ced[5] + 6.4;
this->liveData->params.soc10cec[4] = this->liveData->params.soc10cec[5] + 0.3;
this->liveData->params.soc10odo[4] = this->liveData->params.soc10odo[5] + 30;
this->liveData->params.soc10time[4] = this->liveData->params.soc10time[5] + 900;
this->liveData->params.soc10ced[3] = this->liveData->params.soc10ced[4] + 6.4;
this->liveData->params.soc10cec[3] = this->liveData->params.soc10cec[4] + 0;
this->liveData->params.soc10odo[3] = this->liveData->params.soc10odo[4] + 30;
this->liveData->params.soc10time[3] = this->liveData->params.soc10time[4] + 900;
this->liveData->params.soc10ced[2] = this->liveData->params.soc10ced[3] + 5.4;
this->liveData->params.soc10cec[2] = this->liveData->params.soc10cec[3] + 0.1;
this->liveData->params.soc10odo[2] = this->liveData->params.soc10odo[3] + 30;
this->liveData->params.soc10time[2] = this->liveData->params.soc10time[3] + 900;
this->liveData->params.soc10ced[1] = this->liveData->params.soc10ced[2] + 6.2;
this->liveData->params.soc10cec[1] = this->liveData->params.soc10cec[2] + 0.1;
this->liveData->params.soc10odo[1] = this->liveData->params.soc10odo[2] + 30;
this->liveData->params.soc10time[1] = this->liveData->params.soc10time[2] + 900;
this->liveData->params.soc10ced[0] = this->liveData->params.soc10ced[1] + 2.9;
this->liveData->params.soc10cec[0] = this->liveData->params.soc10cec[1] + 0.5;
this->liveData->params.soc10odo[0] = this->liveData->params.soc10odo[1] + 15;
this->liveData->params.soc10time[0] = this->liveData->params.soc10time[1] + 900;
*/
}
#endif //CARHYUNDAIIONIQ_CPP

16
CarHyundaiIoniq.h Normal file
View File

@@ -0,0 +1,16 @@
#ifndef CARHYUNDAIIONIQ_H
#define CARHYUNDAIIONIQ_H
#include "CarInterface.h"
class CarHyundaiIoniq : public CarInterface {
private:
public:
void activateCommandQueue() override;
void parseRowMerged() override;
void loadTestData() override;
};
#endif

23
CarInterface.cpp Normal file
View File

@@ -0,0 +1,23 @@
#ifndef CARINTERFACE_CPP
#define CARINTERFACE_CPP
#include "CarInterface.h"
#include "LiveData.h"
void CarInterface::setLiveData(LiveData* pLiveData) {
this->liveData = pLiveData;
}
void CarInterface::activateCommandQueue() {
}
void CarInterface::parseRowMerged() {
}
void CarInterface::loadTestData() {
}
#endif // CARINTERFACE_CPP

17
CarInterface.h Normal file
View File

@@ -0,0 +1,17 @@
#ifndef CARINTERFACE_H
#define CARINTERFACE_H
#include "LiveData.h"
class CarInterface {
private:
public:
LiveData* liveData;
void setLiveData(LiveData* pLiveData);
virtual void activateCommandQueue();
virtual void parseRowMerged();
virtual void loadTestData();
};
#endif // CARINTERFACE_H

520
CarKiaDebugObd2.cpp Normal file
View File

@@ -0,0 +1,520 @@
#ifndef CARKIADEBUGOBD2_CPP
#define CARKIADEBUGOBD2_CPP
#include "CarKiaDebugObd2.h"
#define commandQueueCountDebugObd2Kia 256
#define commandQueueLoopFromDebugObd2Kia 8
/**
activateCommandQueue
*/
void CarKiaDebugObd2::activateCommandQueue() {
String commandQueueDebugObd2Kia[commandQueueCountDebugObd2Kia] = {
"AT Z", // Reset all
"AT I", // Print the version ID
"AT E0", // Echo off
"AT L0", // Linefeeds off
"AT S0", // Printing of spaces on
"AT SP 6", // Select protocol to ISO 15765-4 CAN (11 bit ID, 500 kbit/s)
"AT DP",
"AT ST16",
// Loop from here
// Request ID Response ID ECU name Can bus Protocol Description
// 725 72D WPS B Wireless phone charger
//"ATSH725",
//"2201", // All with negative resp. "2202", "2203", "2101", "2102", "220101", "220102", "22B001", "22C001", "22C101",
// 736 73E VESS P Virtual Engine Sound system
//"ATSH736",
//"2201", // All with negative resp. "2202", "2203", "2101", "2102",
//"220101", // All with 62 response "220102", "22B001", "22C001", "22C101",
// 755 75D BSD Right Blind spot detection Right
// "ATSH755",
// "2201", // ALL with negative 7F2213, etc "2202", "2203", "2101", "2102", "220101", "220102", "22B001", "22C001", "22C101",
// 770 778 IGPM All UDS Integrated Gateway and power control module
"ATSH770",
"22BC01", // 009 62BC01400000000001AAAAAAAA
"22BC02", // 62BC0200000000
"22BC03", // 00B 62BC03FDEE7C730A600000AAAA
"22BC04", // 00B 62BC04B33F74EA0D002042AAAA
"22BC05", // 00B 62BC05BF13200001000000AAAA
"22BC06", // 00B 62BC06B48000002C000000AAAA
"22BC07", // 00B 62BC070849DBC000101900AAAA
//"22BC08", // ALL with NEGATIVE RESPONSE "22BC09", "22BC0A", "22BC0B", "22BC0C", "22BC0D", "22BC0E", "22BC0F",
// 783 78B AMP M Amplifier
//"ATSH783",
// "2201",// ALL with NEGATIVE RESPONSE "2202", "2203", "2101", "2102", "220101", "220102", "22B001", "22C001", "22C101",
// 796 79E PGS C Parking Guide System
//"ATSH796",
//"2201", // ALL with NEGATIVE RESPONSE "2202", "2203", "2101", "2102", "220101", "220102", "22B001", "22C001", "22C101",
// 7A0 7A8 BCM / TPMS B UDS Body control module 22 B0 01 to 22 B0 0E
// C Tire Pressure Monitoring "At least 22 C0 01 to 22 C0 02 & 22 C0 0B to 22 C0 0F"
"ATSH7A0",
"22B001", // 016 62B00140C20000000000000000000001010000000001AAAAAAAAAA
"22B002", // 009 62B002C00000000300AAAAAAAA
"22B003", // 018 62B003BFCB8000A23D63B164F8F7F73DF80000A400A4A4A4AAAAAA
"22B004", // 00B 62B0047402994E0E008800AAAA
"22B005", // 00B 62B0052000100000000800AAAA
"22B006", // 00B 62B0062000000000000000AAAA
"22B007", // 00B 62B007002001E000040000AAAA
"22B008", // 00B 62B00800510C2000880004AAAA
"22B009", // 00B 62B009FEEEFEEE08000800AAAA
"22B00A", // 00B 62B00AE3FEE3000040C500AAAA
//"22B00B", // 7F2231
"22B00C", // 00B 62B00C3F00000000000000AAAA
"22B00D", // 00B 62B00DFCFCFC0000000000AAAA
"22B00E", // 00B 62B00E0800000000000000AAAA
//"22B00F", // 7F2231
"22C001", // 01D 62C001000000002E2E02500706B5B50A098C3C0000000001FF01000101AAAAAAAAAA
"22C002", // 017 62C002FFFF0000D2E149F3D2DBDACBD2E84EBBD2E84E93AAAAAAAA
"22C003", // 021 62C00300000000444F303101002E2E02500706B5B50A098C3C0000000001FF0100AA
"22C004", // 021 62C004000000004E41303101002E2E024B0005B5B508088C3C0100000001FF0100AA
"22C005", // 021 62C005000000004E54504D0100302F02500000ABAB00008C3C0000030001FF0000AA
"22C006", // 021 62C00600000000444F303201002E2E02500706B5AB0A098C3C0000000001010100AA
"22C007", // 021 62C007000000004E41303201002E2E024B0005B5AB08088C3C0100000001010100AA
"22C008", // 021 62C00800000000434E303101002E2E02500706B5B50A098C3C0000020001FF0100AA
"22C009", // 021 62C00900000000303030360000FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFAA
"22C00A", // 021 62C00A00000000303030370000FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFAA
"22C00B", // 017 62C00BFFFF0000AF470100B4480100B5460100B3460100AAAAAAAA
"22C00C", // 025 62C00CFFFF03000000000000FFFF0000000000000000FFFF0000000000000000FFFF000000AAAAAAAA
"22C00D", // 025 62C00DFFFF03000000000000FFFF0000000000000000FFFF0000000000000000FFFF000000AAAAAAAA
"22C00E", // 025 62C00EFFFF03000000000000FFFF0000000000000000FFFF0000000000000000FFFF000000AAAAAAAA
"22C00F", // 025 62C00FFFFF03000000000000FFFF0000000000000000FFFF0000000000000000FFFF000000AAAAAAAA
// 7A1 7A9 DDM B Driver door module
// "ATSH7A1",
// "2201", // All with NO DATA "2202", "2203", "2101", "2102", "220101", "220102", "22B001", "22C001", "22C101",
// 7A2 7AA ADM B Assist door module
//"ATSH7A2",
// "2201", // ALL with NO DATA "2202", "2203", "2101", "2102", "220101", "220102", "22B001", "22C001", "22C101",
// 7A3 7AB PSM B UDS Power Seat Module
// "ATSH7A3",
// "22B401", // All with NO DATA "22B402", "22B403", "22B404", "22B405", "22B406", "22B407", "22B408", "22B409", "22B40A",
// 7A5 7AD SMK B UDS Smart Key
"ATSH7A5",
"22B001", // 7F2278 7F2231
"22B002", // positive
"22B003", // positive
"22B004", // 7F2278 7F2231
"22B005", // positive
"22B006", // positive
"22B007", // positive
"22B008", // positive
"22B009", // positive
"22B00A", // positive
// 7B3 7BB AIRCON / ACU UDS Aircondition
"ATSH7B3",
"220100", // 026 6201007E5027C8FF7C6D6B05EFBCFFFFEFFF10FFFFFFFFFFFFBFFFFF52B3919900FFFF01FFFF000000 in/out temp
// "220101", // 7F2231
"220102", // 014 620102FFF80000B36B0101000101003C00016E12 coolant temp1, 2
// "220103", // 7F2231
// 7B7 7BF BSD Left Blind spot detection Left
"ATSH7B7",
// "2201", // ALL NEGATIVE RESP "2202", "2203", "2101", "2102", "220101", "220102", "22B001", "22C001", "22C101",
// 7C4 7CC MFC Multi Function Camera
"ATSH7C4",
"220101", // 6201010E
"220102", // 62010200000000
// 7C6 7CE CM C & M UDS Cluster Module
"ATSH7C6",
"22B001", // 008 62B00100000000000000000000
"22B002", // 00F 62B002E0000000FFA200AD8F0000000000000000 odo
"22B003", // 008 62B00398000000010000000000
//"22B004", // NO DATA
// 7D0 7D8 AEB UDS? Autonomous Emergency Breaking
// "ATSH7D0",
// "2201", // ALL CODES WITH NEGATIVE RESPONSE
// "2202", // "2203", // "2101", // "2102", // "220101", // "220102", // "22B001", // "22C001", // "22C101",
// 7D1 7D9 ABS / ESP + AHB UDS
"ATSH7D1",
"22C101", // 02A 62C1015FD7E7D0FFFF00FF04D0D400000000FF7EFF0030F5010000FFFF7F6307F207FE05FF00FF3FFFFFAAAAAAAAAAAA
"22C102", // 01A 62C10237000000FFFFFFFFFFFF00FF05FFFFFF00FF5501FFFFFFAA
"22C103", // 01A 62C103BE3000000DFFF0FCFE7FFF7FFFFFFFFFFF000005B50000AA
// 7D2 7DA AIRBAG SRS Sytem
// "ATSH7D2",
// "2101", // 7F2211
// "2102", // 7F2211
// "220101", // 7F2211
// "220102", // 7F2211
// "22B001", // 7F2211
// "22C001", // 7F2211
// "22C101", // 7F2211
// 7D4 7DC EPS Electric power steering
"ATSH7D4",
//"2101", // 7F2121
//"2102", // 7F2121
"220101", // 012 6201018387FD009DFFF90100000010101921AAAA
"220102", // 008 6201020000000500AAAAAAAAAA
// "22B001", // 7F2231
// "22C001", // 7F2231
// "22C101", // 7F2231
// 7DF UNKNOWN
//"ATSH7DF",
//"2106", // 013 7F2112 028 6106FFFF800000000000000300001C001C001C000600060006000F000000010000000000000000015801580158015700
//"220106", // 01B 620106FFFFFFFF12001200307C7C00317C830000B4B3000A28EA00
// 7E2 7EA VMCU H & P KWP2000 Vehicle Motor Control Unit 21 01 to 21 02 & 1A 80++
"ATSH7E2",
"2101", // 018 6101FFF8000009285A3806480300000000C4693404080805000000 speed, ..
"2102", // 027 6102F8FFFC000101000000851BB5780234FA0BAB8D1933E07F5B211C74000001010100000007000000 aux, ..
//"2103", // 7F2112
//"1A80", // Working VIN 1A 8A 8C 8D ..
// 7E3 7EB MCU H & P KWP2000 Motor Control Unit 21 01 to 21 06
"ATSH7E3",
"2101", // 01E 610100007FFF0C3C00BD8D0A3300B00900002D0252025033D500C3FF68FF00000000
"2102", // 03A 610207FFFFFF00000D000D00260008080909000001004614CDABC2CD3F005581720085CAF5265D0DC1CD0000EC3400000000000000000000FF0000000000
"2103", // 06E 610300007FFF0000000000000000000000000000000000005C010E02FDFD040400000000000000000000000048058D0C0200160000000000AA3F000005000000AE0102000000000000000000000000000000000000000000BB0B00000000000000000000680000000000E803000000
"2104", // 060 6104000001FF000000000000D7425D03000000000000050000007A2B00000000000000003200000000000000000000000000000000000000000000000000000000000000010000000100010001000000030000000000000000006D0000008E1B00
"2105", // 067 6105000001FF630200010000005900000C00630200010000000100000C006B0200020000003300250D0136010096BA03000100000C000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000
"2106", // 013 6106000000030000000000000000000000000300
//"2107", // 7F2112
// 7E4 7EC BMS P UDS Battery Management System 22 01 01 to 22 01 06
"ATSH7E4",
"220101", // 03E 620101FFF7E7FF6B0000000003001C0E2F161414141513000012B930B9380000830003E1E30003C95B0001722C00015B5B0040D1660D016B0000000003E8 power kw, ..
"220102", // 027 620102FFFFFFFFB9B9B9B9B9B9B9B9B9B9B9B9B9B9B9B9B9B9B9B9B9B9B9B9B9B9B9B9B9B9B9B9AAAA cell voltages, screen 3 only
"220103", // 027 620103FFFFFFFFB9B9B9B9B9B9B9B9B9B9B9B9B9B9B9B9B9B9B9B9B9B9B9B9B9B9B9B9B9B9B9B9AAAA cell voltages, screen 3 only
"220104", // 027 620104FFFFFFFFB9B9B9B9B9B9B9B9B9B9B9B9B9B9B9B9B9B9B9B9B9B9B9B9B9B9B9B9B9B9B9B9AAAA
"220105", // 02E 620105003FFF90000000000000000012836A0142684268000150126E03E8000000006E0000B9B900000F00000000AAAA soh, soc, .
"220106", // 01B 620106FFFFFFFF12001200307C7C00007C030000B4B3000A28EA00 cooling water temp
// "220107", // 7F2231
// 7E5 7ED OBC KWP2000 OnBoard Charger 21 01 to 21 03
"ATSH7E5",
"2101", // 01A 6101DFE0000001010001000000000E2F0533051D0078000000C800
"2102", // 011 6102FE000000000403E8000001BF000028000000
"2103", // 039 6103FFFFFDF80000000000000000000000000000000000000000000000000000000000000000007576767600000000000000000004000400030000000000
"2104", // 022 6104FFF000000A280A280A280000E324006900000003000000000000000000000000
"2105", // 046 61050000000081AA791E8013791E779C791E8BD37907874A79108D67791473777915727E7914753179156FAE7917768F79147650792876257930757E7914759379167545791D000000000000
"2106", // 028 6106FFFF8000001C001C001C000600060006000E000000010000000000000000015801580158015800
//"2107", // ret 7F2112
// 7E6 7EE ?? ?? 21 08 05 to 21 08 0F -> All negative response
//"ATSH7E6",
//"210805", // ret 7F2112
//"210806", // ret 7F2112
//"210807", // ret 7F2112
};
// 39 or 64 kWh model?
this->liveData->params.batteryTotalAvailableKWh = 64;
// Empty and fill command queue
for (uint16_t i = 0; i < 300; i++) {
this->liveData->commandQueue[i] = "";
}
for (uint16_t i = 0; i < commandQueueCountDebugObd2Kia; i++) {
this->liveData->commandQueue[i] = commandQueueDebugObd2Kia[i];
}
this->liveData->commandQueueLoopFrom = commandQueueLoopFromDebugObd2Kia;
this->liveData->commandQueueCount = commandQueueCountDebugObd2Kia;
}
/**
parseRowMerged
*/
void CarKiaDebugObd2::parseRowMerged() {
// VMCU 7E2
if (this->liveData->currentAtshRequest.equals("ATSH7E2")) {
if (this->liveData->commandRequest.equals("2101")) {
this->liveData->params.speedKmh = this->liveData->hexToDec(this->liveData->responseRowMerged.substring(32, 36).c_str(), 2, false) * 0.0155; // / 100.0 *1.609 = real to gps is 1.750
if (this->liveData->params.speedKmh < -99 || this->liveData->params.speedKmh > 200)
this->liveData->params.speedKmh = 0;
}
if (this->liveData->commandRequest.equals("2102")) {
this->liveData->params.auxPerc = this->liveData->hexToDec(this->liveData->responseRowMerged.substring(50, 52).c_str(), 1, false);
this->liveData->params.auxCurrentAmp = - this->liveData->hexToDec(this->liveData->responseRowMerged.substring(46, 50).c_str(), 2, true) / 1000.0;
}
}
// Cluster module 7c6
if (this->liveData->currentAtshRequest.equals("ATSH7C6")) {
if (this->liveData->commandRequest.equals("22B002")) {
this->liveData->params.odoKm = float(strtol(this->liveData->responseRowMerged.substring(18, 24).c_str(), 0, 16));
}
}
// Aircon 7b3
if (this->liveData->currentAtshRequest.equals("ATSH7B3")) {
if (this->liveData->commandRequest.equals("220100")) {
this->liveData->params.indoorTemperature = (this->liveData->hexToDec(this->liveData->responseRowMerged.substring(16, 18).c_str(), 1, false) / 2) - 40;
this->liveData->params.outdoorTemperature = (this->liveData->hexToDec(this->liveData->responseRowMerged.substring(18, 20).c_str(), 1, false) / 2) - 40;
}
if (this->liveData->commandRequest.equals("220102") && this->liveData->responseRowMerged.substring(12, 14) == "00") {
this->liveData->params.coolantTemp1C = (this->liveData->hexToDec(this->liveData->responseRowMerged.substring(14, 16).c_str(), 1, false) / 2) - 40;
this->liveData->params.coolantTemp2C = (this->liveData->hexToDec(this->liveData->responseRowMerged.substring(16, 18).c_str(), 1, false) / 2) - 40;
}
}
// BMS 7e4
if (this->liveData->currentAtshRequest.equals("ATSH7E4")) {
if (this->liveData->commandRequest.equals("220101")) {
this->liveData->params.cumulativeEnergyChargedKWh = float(strtol(this->liveData->responseRowMerged.substring(82, 90).c_str(), 0, 16)) / 10.0;
if (this->liveData->params.cumulativeEnergyChargedKWhStart == -1)
this->liveData->params.cumulativeEnergyChargedKWhStart = this->liveData->params.cumulativeEnergyChargedKWh;
this->liveData->params.cumulativeEnergyDischargedKWh = float(strtol(this->liveData->responseRowMerged.substring(90, 98).c_str(), 0, 16)) / 10.0;
if (this->liveData->params.cumulativeEnergyDischargedKWhStart == -1)
this->liveData->params.cumulativeEnergyDischargedKWhStart = this->liveData->params.cumulativeEnergyDischargedKWh;
this->liveData->params.auxVoltage = this->liveData->hexToDec(this->liveData->responseRowMerged.substring(64, 66).c_str(), 2, true) / 10.0;
this->liveData->params.batPowerAmp = - this->liveData->hexToDec(this->liveData->responseRowMerged.substring(26, 30).c_str(), 2, true) / 10.0;
this->liveData->params.batVoltage = this->liveData->hexToDec(this->liveData->responseRowMerged.substring(30, 34).c_str(), 2, false) / 10.0;
this->liveData->params.batPowerKw = (this->liveData->params.batPowerAmp * this->liveData->params.batVoltage) / 1000.0;
this->liveData->params.batPowerKwh100 = this->liveData->params.batPowerKw / this->liveData->params.speedKmh * 100;
this->liveData->params.batCellMaxV = this->liveData->hexToDec(this->liveData->responseRowMerged.substring(52, 54).c_str(), 1, false) / 50.0;
this->liveData->params.batCellMinV = this->liveData->hexToDec(this->liveData->responseRowMerged.substring(56, 58).c_str(), 1, false) / 50.0;
this->liveData->params.batModuleTempC[0] = this->liveData->hexToDec(this->liveData->responseRowMerged.substring(38, 40).c_str(), 1, true);
this->liveData->params.batModuleTempC[1] = this->liveData->hexToDec(this->liveData->responseRowMerged.substring(40, 42).c_str(), 1, true);
this->liveData->params.batModuleTempC[2] = this->liveData->hexToDec(this->liveData->responseRowMerged.substring(42, 44).c_str(), 1, true);
this->liveData->params.batModuleTempC[3] = this->liveData->hexToDec(this->liveData->responseRowMerged.substring(44, 46).c_str(), 1, true);
//this->liveData->params.batTempC = this->liveData->hexToDec(this->liveData->responseRowMerged.substring(36, 38).c_str(), 1, true);
//this->liveData->params.batMaxC = this->liveData->hexToDec(this->liveData->responseRowMerged.substring(34, 36).c_str(), 1, true);
//this->liveData->params.batMinC = this->liveData->hexToDec(this->liveData->responseRowMerged.substring(36, 38).c_str(), 1, true);
// This is more accurate than min/max from BMS. It's required to detect kona/eniro cold gates (min 15C is needed > 43kW charging, min 25C is needed > 58kW charging)
this->liveData->params.batMinC = this->liveData->params.batMaxC = this->liveData->params.batModuleTempC[0];
this->liveData->params.batMinC = (this->liveData->params.batModuleTempC[1] < this->liveData->params.batMinC) ? this->liveData->params.batModuleTempC[1] : this->liveData->params.batMinC;
this->liveData->params.batMinC = (this->liveData->params.batModuleTempC[2] < this->liveData->params.batMinC) ? this->liveData->params.batModuleTempC[2] : this->liveData->params.batMinC;
this->liveData->params.batMinC = (this->liveData->params.batModuleTempC[3] < this->liveData->params.batMinC) ? this->liveData->params.batModuleTempC[3] : this->liveData->params.batMinC;
this->liveData->params.batMaxC = (this->liveData->params.batModuleTempC[1] > this->liveData->params.batMaxC) ? this->liveData->params.batModuleTempC[1] : this->liveData->params.batMaxC;
this->liveData->params.batMaxC = (this->liveData->params.batModuleTempC[2] > this->liveData->params.batMaxC) ? this->liveData->params.batModuleTempC[2] : this->liveData->params.batMaxC;
this->liveData->params.batMaxC = (this->liveData->params.batModuleTempC[3] > this->liveData->params.batMaxC) ? this->liveData->params.batModuleTempC[3] : this->liveData->params.batMaxC;
this->liveData->params.batTempC = this->liveData->params.batMinC;
this->liveData->params.batInletC = this->liveData->hexToDec(this->liveData->responseRowMerged.substring(50, 52).c_str(), 1, true);
if (this->liveData->params.speedKmh < 10 && this->liveData->params.batPowerKw >= 1 && this->liveData->params.socPerc > 0 && this->liveData->params.socPerc <= 100) {
if ( this->liveData->params.chargingGraphMinKw[int(this->liveData->params.socPerc)] == -100 || this->liveData->params.batPowerKw < this->liveData->params.chargingGraphMinKw[int(this->liveData->params.socPerc)])
this->liveData->params.chargingGraphMinKw[int(this->liveData->params.socPerc)] = this->liveData->params.batPowerKw;
if ( this->liveData->params.chargingGraphMaxKw[int(this->liveData->params.socPerc)] == -100 || this->liveData->params.batPowerKw > this->liveData->params.chargingGraphMaxKw[int(this->liveData->params.socPerc)])
this->liveData->params.chargingGraphMaxKw[int(this->liveData->params.socPerc)] = this->liveData->params.batPowerKw;
this->liveData->params.chargingGraphBatMinTempC[int(this->liveData->params.socPerc)] = this->liveData->params.batMinC;
this->liveData->params.chargingGraphBatMaxTempC[int(this->liveData->params.socPerc)] = this->liveData->params.batMaxC;
this->liveData->params.chargingGraphHeaterTempC[int(this->liveData->params.socPerc)] = this->liveData->params.batHeaterC;
}
}
// BMS 7e4
if (this->liveData->commandRequest.equals("220102") && this->liveData->responseRowMerged.substring(12, 14) == "FF") {
for (int i = 0; i < 32; i++) {
this->liveData->params.cellVoltage[i] = this->liveData->hexToDec(this->liveData->responseRowMerged.substring(14 + (i * 2), 14 + (i * 2) + 2).c_str(), 1, false) / 50;
}
}
// BMS 7e4
if (this->liveData->commandRequest.equals("220103")) {
for (int i = 0; i < 32; i++) {
this->liveData->params.cellVoltage[32 + i] = this->liveData->hexToDec(this->liveData->responseRowMerged.substring(14 + (i * 2), 14 + (i * 2) + 2).c_str(), 1, false) / 50;
}
}
// BMS 7e4
if (this->liveData->commandRequest.equals("220104")) {
for (int i = 0; i < 32; i++) {
this->liveData->params.cellVoltage[64 + i] = this->liveData->hexToDec(this->liveData->responseRowMerged.substring(14 + (i * 2), 14 + (i * 2) + 2).c_str(), 1, false) / 50;
}
}
// BMS 7e4
if (this->liveData->commandRequest.equals("220105")) {
this->liveData->params.socPercPrevious = this->liveData->params.socPerc;
this->liveData->params.sohPerc = this->liveData->hexToDec(this->liveData->responseRowMerged.substring(56, 60).c_str(), 2, false) / 10.0;
this->liveData->params.socPerc = this->liveData->hexToDec(this->liveData->responseRowMerged.substring(68, 70).c_str(), 1, false) / 2.0;
// Soc10ced table, record x0% CEC/CED table (ex. 90%->89%, 80%->79%)
if (this->liveData->params.socPercPrevious - this->liveData->params.socPerc > 0) {
byte index = (int(this->liveData->params.socPerc) == 4) ? 0 : (int)(this->liveData->params.socPerc / 10) + 1;
if ((int(this->liveData->params.socPerc) % 10 == 9 || int(this->liveData->params.socPerc) == 4) && this->liveData->params.soc10ced[index] == -1) {
struct tm now;
getLocalTime(&now, 0);
time_t time_now_epoch = mktime(&now);
this->liveData->params.soc10ced[index] = this->liveData->params.cumulativeEnergyDischargedKWh;
this->liveData->params.soc10cec[index] = this->liveData->params.cumulativeEnergyChargedKWh;
this->liveData->params.soc10odo[index] = this->liveData->params.odoKm;
this->liveData->params.soc10time[index] = time_now_epoch;
}
}
this->liveData->params.batHeaterC = this->liveData->hexToDec(this->liveData->responseRowMerged.substring(52, 54).c_str(), 1, true);
//
for (int i = 30; i < 32; i++) { // ai/aj position
this->liveData->params.cellVoltage[96 - 30 + i] = this->liveData->hexToDec(this->liveData->responseRowMerged.substring(14 + (i * 2), 14 + (i * 2) + 2).c_str(), 1, false) / 50;
}
}
// BMS 7e4
if (this->liveData->commandRequest.equals("220106")) {
this->liveData->params.coolingWaterTempC = this->liveData->hexToDec(this->liveData->responseRowMerged.substring(14, 16).c_str(), 1, false);
}
}
// TPMS 7a0
if (this->liveData->currentAtshRequest.equals("ATSH7A0")) {
if (this->liveData->commandRequest.equals("22c00b")) {
this->liveData->params.tireFrontLeftPressureBar = this->liveData->hexToDec(this->liveData->responseRowMerged.substring(14, 16).c_str(), 2, false) / 72.51886900361; // === OK Valid *0.2 / 14.503773800722
this->liveData->params.tireFrontRightPressureBar = this->liveData->hexToDec(this->liveData->responseRowMerged.substring(22, 24).c_str(), 2, false) / 72.51886900361; // === OK Valid *0.2 / 14.503773800722
this->liveData->params.tireRearRightPressureBar = this->liveData->hexToDec(this->liveData->responseRowMerged.substring(30, 32).c_str(), 2, false) / 72.51886900361; // === OK Valid *0.2 / 14.503773800722
this->liveData->params.tireRearLeftPressureBar = this->liveData->hexToDec(this->liveData->responseRowMerged.substring(38, 40).c_str(), 2, false) / 72.51886900361; // === OK Valid *0.2 / 14.503773800722
this->liveData->params.tireFrontLeftTempC = this->liveData->hexToDec(this->liveData->responseRowMerged.substring(16, 18).c_str(), 2, false) - 50; // === OK Valid
this->liveData->params.tireFrontRightTempC = this->liveData->hexToDec(this->liveData->responseRowMerged.substring(24, 26).c_str(), 2, false) - 50; // === OK Valid
this->liveData->params.tireRearRightTempC = this->liveData->hexToDec(this->liveData->responseRowMerged.substring(32, 34).c_str(), 2, false) - 50; // === OK Valid
this->liveData->params.tireRearLeftTempC = this->liveData->hexToDec(this->liveData->responseRowMerged.substring(40, 42).c_str(), 2, false) - 50; // === OK Valid
}
}
}
/**
loadTestData
*/
void CarKiaDebugObd2::loadTestData() {
// VMCU ATSH7E2
this->liveData->currentAtshRequest = "ATSH7E2";
// 2101
this->liveData->commandRequest = "2101";
this->liveData->responseRowMerged = "6101FFF8000009285A3B0648030000B4179D763404080805000000";
this->parseRowMerged();
// 2102
this->liveData->commandRequest = "2102";
this->liveData->responseRowMerged = "6102F8FFFC000101000000840FBF83BD33270680953033757F59291C76000001010100000007000000";
this->liveData->responseRowMerged = "6102F8FFFC000101000000931CC77F4C39040BE09BA7385D8158832175000001010100000007000000";
this->parseRowMerged();
// "ATSH7DF",
this->liveData->currentAtshRequest = "ATSH7DF";
// 2106
this->liveData->commandRequest = "2106";
this->liveData->responseRowMerged = "6106FFFF800000000000000200001B001C001C000600060006000E000000010000000000000000013D013D013E013E00";
this->parseRowMerged();
// AIRCON / ACU ATSH7B3
this->liveData->currentAtshRequest = "ATSH7B3";
// 220100
this->liveData->commandRequest = "220100";
this->liveData->responseRowMerged = "6201007E5027C8FF7F765D05B95AFFFF5AFF11FFFFFFFFFFFF6AFFFF2DF0757630FFFF00FFFF000000";
this->liveData->responseRowMerged = "6201007E5027C8FF867C58121010FFFF10FF8EFFFFFFFFFFFF10FFFF0DF0617900FFFF01FFFF000000";
this->parseRowMerged();
// BMS ATSH7E4
this->liveData->currentAtshRequest = "ATSH7E4";
// 220101
this->liveData->commandRequest = "220101";
this->liveData->responseRowMerged = "620101FFF7E7FF99000000000300B10EFE120F11100F12000018C438C30B00008400003864000035850000153A00001374000647010D017F0BDA0BDA03E8";
this->liveData->responseRowMerged = "620101FFF7E7FFB3000000000300120F9B111011101011000014CC38CB3B00009100003A510000367C000015FB000013D3000690250D018E0000000003E8";
this->parseRowMerged();
// 220102
this->liveData->commandRequest = "220102";
this->liveData->responseRowMerged = "620102FFFFFFFFCBCBCBCBCBCBCBCBCBCBCBCBCBCBCBCBCBCBCBCBCBCBCBCBCBCBCBCBCBCBCBCBAAAA";
this->parseRowMerged();
// 220103
this->liveData->commandRequest = "220103";
this->liveData->responseRowMerged = "620103FFFFFFFFCBCBCBCBCBCBCBCBCBCBCBCBCBCBCBCBCBCBCACBCACACFCCCBCBCBCBCBCBCBCBAAAA";
this->parseRowMerged();
// 220104
this->liveData->commandRequest = "220104";
this->liveData->responseRowMerged = "620104FFFFFFFFCBCBCBCBCBCBCBCBCBCBCBCBCBCBCBCBCBCBCBCBCBCBCBCBCBCBCBCBCBCBCBCBAAAA";
this->parseRowMerged();
// 220105
this->liveData->commandRequest = "220105";
this->liveData->responseRowMerged = "620105003fff9000000000000000000F8A86012B4946500101500DAC03E800000000AC0000C7C701000F00000000AAAA";
this->liveData->responseRowMerged = "620105003FFF90000000000000000014918E012927465000015013BB03E800000000BB0000CBCB01001300000000AAAA";
this->parseRowMerged();
// 220106
this->liveData->commandRequest = "220106";
this->liveData->responseRowMerged = "620106FFFFFFFF14001A00240000003A7C86B4B30000000928EA00";
this->parseRowMerged();
// BCM / TPMS ATSH7A0
this->liveData->currentAtshRequest = "ATSH7A0";
// 22c00b
this->liveData->commandRequest = "22c00b";
this->liveData->responseRowMerged = "62C00BFFFF0000B93D0100B43E0100B43D0100BB3C0100AAAAAAAA";
this->parseRowMerged();
// ATSH7C6
this->liveData->currentAtshRequest = "ATSH7C6";
// 22b002
this->liveData->commandRequest = "22b002";
this->liveData->responseRowMerged = "62B002E0000000FFB400330B0000000000000000";
this->parseRowMerged();
this->liveData->params.batModuleTempC[0] = 28;
this->liveData->params.batModuleTempC[1] = 29;
this->liveData->params.batModuleTempC[2] = 28;
this->liveData->params.batModuleTempC[3] = 30;
// This is more accurate than min/max from BMS. It's required to detect kona/eniro cold gates (min 15C is needed > 43kW charging, min 25C is needed > 58kW charging)
this->liveData->params.batMinC = this->liveData->params.batMaxC = this->liveData->params.batModuleTempC[0];
for (uint16_t i = 1; i < this->liveData->params.batModuleTempCount; i++) {
if (this->liveData->params.batModuleTempC[i] < this->liveData->params.batMinC)
this->liveData->params.batMinC = this->liveData->params.batModuleTempC[i];
if (this->liveData->params.batModuleTempC[i] > this->liveData->params.batMaxC)
this->liveData->params.batMaxC = this->liveData->params.batModuleTempC[i];
}
this->liveData->params.batTempC = this->liveData->params.batMinC;
//
this->liveData->params.soc10ced[10] = 2200;
this->liveData->params.soc10cec[10] = 2500;
this->liveData->params.soc10odo[10] = 13000;
this->liveData->params.soc10time[10] = 13000;
this->liveData->params.soc10ced[9] = this->liveData->params.soc10ced[10] + 6.4;
this->liveData->params.soc10cec[9] = this->liveData->params.soc10cec[10] + 0;
this->liveData->params.soc10odo[9] = this->liveData->params.soc10odo[10] + 30;
this->liveData->params.soc10time[9] = this->liveData->params.soc10time[10] + 900;
this->liveData->params.soc10ced[8] = this->liveData->params.soc10ced[9] + 6.8;
this->liveData->params.soc10cec[8] = this->liveData->params.soc10cec[9] + 0;
this->liveData->params.soc10odo[8] = this->liveData->params.soc10odo[9] + 30;
this->liveData->params.soc10time[8] = this->liveData->params.soc10time[9] + 900;
this->liveData->params.soc10ced[7] = this->liveData->params.soc10ced[8] + 7.2;
this->liveData->params.soc10cec[7] = this->liveData->params.soc10cec[8] + 0.6;
this->liveData->params.soc10odo[7] = this->liveData->params.soc10odo[8] + 30;
this->liveData->params.soc10time[7] = this->liveData->params.soc10time[8] + 900;
this->liveData->params.soc10ced[6] = this->liveData->params.soc10ced[7] + 6.7;
this->liveData->params.soc10cec[6] = this->liveData->params.soc10cec[7] + 0;
this->liveData->params.soc10odo[6] = this->liveData->params.soc10odo[7] + 30;
this->liveData->params.soc10time[6] = this->liveData->params.soc10time[7] + 900;
this->liveData->params.soc10ced[5] = this->liveData->params.soc10ced[6] + 6.7;
this->liveData->params.soc10cec[5] = this->liveData->params.soc10cec[6] + 0;
this->liveData->params.soc10odo[5] = this->liveData->params.soc10odo[6] + 30;
this->liveData->params.soc10time[5] = this->liveData->params.soc10time[6] + 900;
this->liveData->params.soc10ced[4] = this->liveData->params.soc10ced[5] + 6.4;
this->liveData->params.soc10cec[4] = this->liveData->params.soc10cec[5] + 0.3;
this->liveData->params.soc10odo[4] = this->liveData->params.soc10odo[5] + 30;
this->liveData->params.soc10time[4] = this->liveData->params.soc10time[5] + 900;
this->liveData->params.soc10ced[3] = this->liveData->params.soc10ced[4] + 6.4;
this->liveData->params.soc10cec[3] = this->liveData->params.soc10cec[4] + 0;
this->liveData->params.soc10odo[3] = this->liveData->params.soc10odo[4] + 30;
this->liveData->params.soc10time[3] = this->liveData->params.soc10time[4] + 900;
this->liveData->params.soc10ced[2] = this->liveData->params.soc10ced[3] + 5.4;
this->liveData->params.soc10cec[2] = this->liveData->params.soc10cec[3] + 0.1;
this->liveData->params.soc10odo[2] = this->liveData->params.soc10odo[3] + 30;
this->liveData->params.soc10time[2] = this->liveData->params.soc10time[3] + 900;
this->liveData->params.soc10ced[1] = this->liveData->params.soc10ced[2] + 6.2;
this->liveData->params.soc10cec[1] = this->liveData->params.soc10cec[2] + 0.1;
this->liveData->params.soc10odo[1] = this->liveData->params.soc10odo[2] + 30;
this->liveData->params.soc10time[1] = this->liveData->params.soc10time[2] + 900;
this->liveData->params.soc10ced[0] = this->liveData->params.soc10ced[1] + 2.9;
this->liveData->params.soc10cec[0] = this->liveData->params.soc10cec[1] + 0.5;
this->liveData->params.soc10odo[0] = this->liveData->params.soc10odo[1] + 15;
this->liveData->params.soc10time[0] = this->liveData->params.soc10time[1] + 900;
}
#endif // CARKIADEBUGOBD2_CPP

16
CarKiaDebugObd2.h Normal file
View File

@@ -0,0 +1,16 @@
#ifndef CARKIADEBUGOBD2_H
#define CARKIADEBUGOBD2_H
#include "CarInterface.h"
class CarKiaDebugObd2 : public CarInterface {
private:
public:
void activateCommandQueue() override;
void parseRowMerged() override;
void loadTestData() override;
};
#endif // CARKIADEBUGOBD2_H

436
CarKiaEniro.cpp Normal file
View File

@@ -0,0 +1,436 @@
#ifndef CARKIAENIRO_CPP
#define CARKIAENIRO_CPP
#include <Arduino.h>
#include <stdint.h>
#include <WString.h>
#include <String.h>
#include <sys/time.h>
#include "LiveData.h"
#include "CarKiaEniro.h"
#define commandQueueCountKiaENiro 30
#define commandQueueLoopFromKiaENiro 10
/**
* activateCommandQueue
*/
void CarKiaEniro::activateCommandQueue() {
String commandQueueKiaENiro[commandQueueCountKiaENiro] = {
"AT Z", // Reset all
"AT I", // Print the version ID
"AT S0", // Printing of spaces on
"AT E0", // Echo off
"AT L0", // Linefeeds off
"AT SP 6", // Select protocol to ISO 15765-4 CAN (11 bit ID, 500 kbit/s)
//"AT AL", // Allow Long (>7 byte) messages
//"AT AR", // Automatically receive
//"AT H1", // Headers on (debug only)
//"AT D1", // Display of the DLC on
//"AT CAF0", // Automatic formatting off
////"AT AT0", // disabled adaptive timing
"AT DP",
"AT ST16", // reduced timeout to 1, orig.16
// Loop from (KIA ENIRO)
// ABS / ESP + AHB
"ATSH7D1",
"22C101", // brake, park/drive mode
// IGPM
"ATSH770",
"22BC03", // low beam
"22BC06", // brake light
// VMCU
"ATSH7E2",
"2101", // speed, ...
"2102", // aux, ...
// BMS
"ATSH7E4",
"220101", // power kw, ...
"220102", // cell voltages
"220103", // cell voltages
"220104", // cell voltages
"220105", // soh, soc, ..
"220106", // cooling water temp
// Aircondition
"ATSH7B3",
"220100", // in/out temp
"220102", // coolant temp1, 2
// BCM / TPMS
"ATSH7A0",
"22c00b", // tire pressure/temp
// CLUSTER MODULE
"ATSH7C6",
"22B002", // odo
};
// 39 or 64 kWh model?
this->liveData->params.batModuleTempCount = 4;
this->liveData->params.batteryTotalAvailableKWh = 64;
// =(I18*0,615)*(1+(I18*0,0008)) soc to kwh niro ev 2020
if (this->liveData->settings.carType == CAR_KIA_ENIRO_2020_39 || this->liveData->settings.carType == CAR_HYUNDAI_KONA_2020_39) {
this->liveData->params.batteryTotalAvailableKWh = 39.2;
}
// Empty and fill command queue
for (int i = 0; i < 300; i++) {
this->liveData->commandQueue[i] = "";
}
for (int i = 0; i < commandQueueCountKiaENiro; i++) {
this->liveData->commandQueue[i] = commandQueueKiaENiro[i];
}
this->liveData->commandQueueLoopFrom = commandQueueLoopFromKiaENiro;
this->liveData->commandQueueCount = commandQueueCountKiaENiro;
}
/**
* parseRowMerged
*/
void CarKiaEniro::parseRowMerged() {
bool tempByte;
// ABS / ESP + AHB 7D1
if (this->liveData->currentAtshRequest.equals("ATSH7D1")) {
if (this->liveData->commandRequest.equals("22C101")) {
uint8_t driveMode = this->liveData->hexToDec(this->liveData->responseRowMerged.substring(22, 24).c_str(), 1, false);
this->liveData->params.forwardDriveMode = (driveMode == 4);
this->liveData->params.reverseDriveMode = (driveMode == 2);
this->liveData->params.parkModeOrNeutral = (driveMode == 1);
}
}
// IGPM
if (this->liveData->currentAtshRequest.equals("ATSH770")) {
if (this->liveData->commandRequest.equals("22BC03")) {
tempByte = this->liveData->hexToDec(this->liveData->responseRowMerged.substring(16, 18).c_str(), 1, false);
this->liveData->params.ignitionOnPrevious = this->liveData->params.ignitionOn;
this->liveData->params.ignitionOn = (bitRead(tempByte, 5) == 1);
if (this->liveData->params.ignitionOnPrevious && !this->liveData->params.ignitionOn)
this->liveData->params.automatickShutdownTimer = this->liveData->params.currentTime;
this->liveData->params.lightInfo = this->liveData->hexToDec(this->liveData->responseRowMerged.substring(18, 20).c_str(), 1, false);
this->liveData->params.headLights = (bitRead(this->liveData->params.lightInfo, 5) == 1);
this->liveData->params.dayLights = (bitRead(this->liveData->params.lightInfo, 3) == 1);
}
if (this->liveData->commandRequest.equals("22BC06")) {
this->liveData->params.brakeLightInfo = this->liveData->hexToDec(this->liveData->responseRowMerged.substring(14, 16).c_str(), 1, false);
this->liveData->params.brakeLights = (bitRead(this->liveData->params.brakeLightInfo, 5) == 1);
}
}
// VMCU 7E2
if (this->liveData->currentAtshRequest.equals("ATSH7E2")) {
if (this->liveData->commandRequest.equals("2101")) {
this->liveData->params.speedKmh = this->liveData->hexToDec(this->liveData->responseRowMerged.substring(32, 36).c_str(), 2, false) * 0.0155; // / 100.0 *1.609 = real to gps is 1.750
if (this->liveData->params.speedKmh < -99 || this->liveData->params.speedKmh > 200)
this->liveData->params.speedKmh = 0;
}
if (this->liveData->commandRequest.equals("2102")) {
this->liveData->params.auxPerc = this->liveData->hexToDec(this->liveData->responseRowMerged.substring(50, 52).c_str(), 1, false);
this->liveData->params.auxCurrentAmp = - this->liveData->hexToDec(this->liveData->responseRowMerged.substring(46, 50).c_str(), 2, true) / 1000.0;
}
}
// Cluster module 7c6
if (this->liveData->currentAtshRequest.equals("ATSH7C6")) {
if (this->liveData->commandRequest.equals("22B002")) {
this->liveData->params.odoKm = float(strtol(this->liveData->responseRowMerged.substring(18, 24).c_str(), 0, 16));
}
}
// Aircon 7b3
if (this->liveData->currentAtshRequest.equals("ATSH7B3")) {
if (this->liveData->commandRequest.equals("220100")) {
this->liveData->params.indoorTemperature = (this->liveData->hexToDec(this->liveData->responseRowMerged.substring(16, 18).c_str(), 1, false) / 2) - 40;
this->liveData->params.outdoorTemperature = (this->liveData->hexToDec(this->liveData->responseRowMerged.substring(18, 20).c_str(), 1, false) / 2) - 40;
}
if (this->liveData->commandRequest.equals("220102") && this->liveData->responseRowMerged.substring(12, 14) == "00") {
this->liveData->params.coolantTemp1C = (this->liveData->hexToDec(this->liveData->responseRowMerged.substring(14, 16).c_str(), 1, false) / 2) - 40;
this->liveData->params.coolantTemp2C = (this->liveData->hexToDec(this->liveData->responseRowMerged.substring(16, 18).c_str(), 1, false) / 2) - 40;
}
}
// BMS 7e4
if (this->liveData->currentAtshRequest.equals("ATSH7E4")) {
if (this->liveData->commandRequest.equals("220101")) {
this->liveData->params.cumulativeEnergyChargedKWh = float(strtol(this->liveData->responseRowMerged.substring(82, 90).c_str(), 0, 16)) / 10.0;
if (this->liveData->params.cumulativeEnergyChargedKWhStart == -1)
this->liveData->params.cumulativeEnergyChargedKWhStart = this->liveData->params.cumulativeEnergyChargedKWh;
this->liveData->params.cumulativeEnergyDischargedKWh = float(strtol(this->liveData->responseRowMerged.substring(90, 98).c_str(), 0, 16)) / 10.0;
if (this->liveData->params.cumulativeEnergyDischargedKWhStart == -1)
this->liveData->params.cumulativeEnergyDischargedKWhStart = this->liveData->params.cumulativeEnergyDischargedKWh;
this->liveData->params.availableChargePower = float(strtol(this->liveData->responseRowMerged.substring(16, 20).c_str(), 0, 16)) / 100.0;
this->liveData->params.availableDischargePower = float(strtol(this->liveData->responseRowMerged.substring(20, 24).c_str(), 0, 16)) / 100.0;
//this->liveData->params.isolationResistanceKOhm = this->liveData->hexToDec(this->liveData->responseRowMerged.substring(118, 122).c_str(), 2, true);
this->liveData->params.batFanStatus = this->liveData->hexToDec(this->liveData->responseRowMerged.substring(60, 62).c_str(), 2, true);
this->liveData->params.batFanFeedbackHz = this->liveData->hexToDec(this->liveData->responseRowMerged.substring(62, 64).c_str(), 2, true);
this->liveData->params.auxVoltage = this->liveData->hexToDec(this->liveData->responseRowMerged.substring(64, 66).c_str(), 2, true) / 10.0;
this->liveData->params.batPowerAmp = - this->liveData->hexToDec(this->liveData->responseRowMerged.substring(26, 30).c_str(), 2, true) / 10.0;
this->liveData->params.batVoltage = this->liveData->hexToDec(this->liveData->responseRowMerged.substring(30, 34).c_str(), 2, false) / 10.0;
this->liveData->params.batPowerKw = (this->liveData->params.batPowerAmp * this->liveData->params.batVoltage) / 1000.0;
if (this->liveData->params.batPowerKw < 0) // Reset charging start time
this->liveData->params.chargingStartTime = this->liveData->params.currentTime;
this->liveData->params.batPowerKwh100 = this->liveData->params.batPowerKw / this->liveData->params.speedKmh * 100;
this->liveData->params.batCellMaxV = this->liveData->hexToDec(this->liveData->responseRowMerged.substring(52, 54).c_str(), 1, false) / 50.0;
this->liveData->params.batCellMinV = this->liveData->hexToDec(this->liveData->responseRowMerged.substring(56, 58).c_str(), 1, false) / 50.0;
this->liveData->params.batModuleTempC[0] = this->liveData->hexToDec(this->liveData->responseRowMerged.substring(38, 40).c_str(), 1, true);
this->liveData->params.batModuleTempC[1] = this->liveData->hexToDec(this->liveData->responseRowMerged.substring(40, 42).c_str(), 1, true);
this->liveData->params.batModuleTempC[2] = this->liveData->hexToDec(this->liveData->responseRowMerged.substring(42, 44).c_str(), 1, true);
this->liveData->params.batModuleTempC[3] = this->liveData->hexToDec(this->liveData->responseRowMerged.substring(44, 46).c_str(), 1, true);
this->liveData->params.motorRpm = this->liveData->hexToDec(this->liveData->responseRowMerged.substring(112, 116).c_str(), 2, false);
//this->liveData->params.batTempC = this->liveData->hexToDec(this->liveData->responseRowMerged.substring(36, 38).c_str(), 1, true);
//this->liveData->params.batMaxC = this->liveData->hexToDec(this->liveData->responseRowMerged.substring(34, 36).c_str(), 1, true);
//this->liveData->params.batMinC = this->liveData->hexToDec(this->liveData->responseRowMerged.substring(36, 38).c_str(), 1, true);
// This is more accurate than min/max from BMS. It's required to detect kona/eniro cold gates (min 15C is needed > 43kW charging, min 25C is needed > 58kW charging)
this->liveData->params.batMinC = this->liveData->params.batMaxC = this->liveData->params.batModuleTempC[0];
for (uint16_t i = 1; i < this->liveData->params.batModuleTempCount; i++) {
if (this->liveData->params.batModuleTempC[i] < this->liveData->params.batMinC)
this->liveData->params.batMinC = this->liveData->params.batModuleTempC[i];
if (this->liveData->params.batModuleTempC[i] > this->liveData->params.batMaxC)
this->liveData->params.batMaxC = this->liveData->params.batModuleTempC[i];
}
this->liveData->params.batTempC = this->liveData->params.batMinC;
this->liveData->params.batInletC = this->liveData->hexToDec(this->liveData->responseRowMerged.substring(50, 52).c_str(), 1, true);
if (this->liveData->params.speedKmh < 10 && this->liveData->params.batPowerKw >= 1 && this->liveData->params.socPerc > 0 && this->liveData->params.socPerc <= 100) {
if ( this->liveData->params.chargingGraphMinKw[int(this->liveData->params.socPerc)] < 0 || this->liveData->params.batPowerKw < this->liveData->params.chargingGraphMinKw[int(this->liveData->params.socPerc)])
this->liveData->params.chargingGraphMinKw[int(this->liveData->params.socPerc)] = this->liveData->params.batPowerKw;
if ( this->liveData->params.chargingGraphMaxKw[int(this->liveData->params.socPerc)] < 0 || this->liveData->params.batPowerKw > this->liveData->params.chargingGraphMaxKw[int(this->liveData->params.socPerc)])
this->liveData->params.chargingGraphMaxKw[int(this->liveData->params.socPerc)] = this->liveData->params.batPowerKw;
this->liveData->params.chargingGraphBatMinTempC[int(this->liveData->params.socPerc)] = this->liveData->params.batMinC;
this->liveData->params.chargingGraphBatMaxTempC[int(this->liveData->params.socPerc)] = this->liveData->params.batMaxC;
this->liveData->params.chargingGraphHeaterTempC[int(this->liveData->params.socPerc)] = this->liveData->params.batHeaterC;
this->liveData->params.chargingGraphWaterCoolantTempC[int(this->liveData->params.socPerc)] = this->liveData->params.coolingWaterTempC;
}
}
// BMS 7e4
if (this->liveData->commandRequest.equals("220102") && this->liveData->responseRowMerged.substring(12, 14) == "FF") {
for (int i = 0; i < 32; i++) {
this->liveData->params.cellVoltage[i] = this->liveData->hexToDec(this->liveData->responseRowMerged.substring(14 + (i * 2), 14 + (i * 2) + 2).c_str(), 1, false) / 50;
}
}
// BMS 7e4
if (this->liveData->commandRequest.equals("220103")) {
for (int i = 0; i < 32; i++) {
this->liveData->params.cellVoltage[32 + i] = this->liveData->hexToDec(this->liveData->responseRowMerged.substring(14 + (i * 2), 14 + (i * 2) + 2).c_str(), 1, false) / 50;
}
}
// BMS 7e4
if (this->liveData->commandRequest.equals("220104")) {
for (int i = 0; i < 32; i++) {
this->liveData->params.cellVoltage[64 + i] = this->liveData->hexToDec(this->liveData->responseRowMerged.substring(14 + (i * 2), 14 + (i * 2) + 2).c_str(), 1, false) / 50;
}
}
// BMS 7e4
if (this->liveData->commandRequest.equals("220105")) {
this->liveData->params.socPercPrevious = this->liveData->params.socPerc;
this->liveData->params.sohPerc = this->liveData->hexToDec(this->liveData->responseRowMerged.substring(56, 60).c_str(), 2, false) / 10.0;
this->liveData->params.socPerc = this->liveData->hexToDec(this->liveData->responseRowMerged.substring(68, 70).c_str(), 1, false) / 2.0;
// Soc10ced table, record x0% CEC/CED table (ex. 90%->89%, 80%->79%)
if (this->liveData->params.socPercPrevious - this->liveData->params.socPerc > 0) {
byte index = (int(this->liveData->params.socPerc) == 4) ? 0 : (int)(this->liveData->params.socPerc / 10) + 1;
if ((int(this->liveData->params.socPerc) % 10 == 9 || int(this->liveData->params.socPerc) == 4) && this->liveData->params.soc10ced[index] == -1) {
this->liveData->params.soc10ced[index] = this->liveData->params.cumulativeEnergyDischargedKWh;
this->liveData->params.soc10cec[index] = this->liveData->params.cumulativeEnergyChargedKWh;
this->liveData->params.soc10odo[index] = this->liveData->params.odoKm;
this->liveData->params.soc10time[index] = this->liveData->params.currentTime;
}
}
this->liveData->params.bmsUnknownTempA = this->liveData->hexToDec(this->liveData->responseRowMerged.substring(30, 32).c_str(), 1, true);
this->liveData->params.batHeaterC = this->liveData->hexToDec(this->liveData->responseRowMerged.substring(52, 54).c_str(), 1, true);
this->liveData->params.bmsUnknownTempB = this->liveData->hexToDec(this->liveData->responseRowMerged.substring(82, 84).c_str(), 1, true);
//
for (int i = 30; i < 32; i++) { // ai/aj position
this->liveData->params.cellVoltage[96 - 30 + i] = this->liveData->hexToDec(this->liveData->responseRowMerged.substring(14 + (i * 2), 14 + (i * 2) + 2).c_str(), 1, false) / 50;
}
}
// BMS 7e4
if (this->liveData->commandRequest.equals("220106")) {
this->liveData->params.coolingWaterTempC = this->liveData->hexToDec(this->liveData->responseRowMerged.substring(14, 16).c_str(), 1, false);
this->liveData->params.bmsUnknownTempC = this->liveData->hexToDec(this->liveData->responseRowMerged.substring(18, 20).c_str(), 1, true);
this->liveData->params.bmsUnknownTempD = this->liveData->hexToDec(this->liveData->responseRowMerged.substring(46, 48).c_str(), 1, true);
}
}
// TPMS 7a0
if (this->liveData->currentAtshRequest.equals("ATSH7A0")) {
if (this->liveData->commandRequest.equals("22c00b")) {
this->liveData->params.tireFrontLeftPressureBar = this->liveData->hexToDec(this->liveData->responseRowMerged.substring(14, 16).c_str(), 2, false) / 72.51886900361; // === OK Valid *0.2 / 14.503773800722
this->liveData->params.tireFrontRightPressureBar = this->liveData->hexToDec(this->liveData->responseRowMerged.substring(22, 24).c_str(), 2, false) / 72.51886900361; // === OK Valid *0.2 / 14.503773800722
this->liveData->params.tireRearRightPressureBar = this->liveData->hexToDec(this->liveData->responseRowMerged.substring(30, 32).c_str(), 2, false) / 72.51886900361; // === OK Valid *0.2 / 14.503773800722
this->liveData->params.tireRearLeftPressureBar = this->liveData->hexToDec(this->liveData->responseRowMerged.substring(38, 40).c_str(), 2, false) / 72.51886900361; // === OK Valid *0.2 / 14.503773800722
this->liveData->params.tireFrontLeftTempC = this->liveData->hexToDec(this->liveData->responseRowMerged.substring(16, 18).c_str(), 2, false) - 50; // === OK Valid
this->liveData->params.tireFrontRightTempC = this->liveData->hexToDec(this->liveData->responseRowMerged.substring(24, 26).c_str(), 2, false) - 50; // === OK Valid
this->liveData->params.tireRearRightTempC = this->liveData->hexToDec(this->liveData->responseRowMerged.substring(32, 34).c_str(), 2, false) - 50; // === OK Valid
this->liveData->params.tireRearLeftTempC = this->liveData->hexToDec(this->liveData->responseRowMerged.substring(40, 42).c_str(), 2, false) - 50; // === OK Valid
}
}
}
/**
* loadTestData
*/
void CarKiaEniro::loadTestData() {
// IGPM
this->liveData->currentAtshRequest = "ATSH770";
// 22BC03
this->liveData->commandRequest = "22BC03";
this->liveData->responseRowMerged = "62BC03FDEE7C730A600000AAAA";
this->parseRowMerged();
// ABS / ESP + AHB ATSH7D1
this->liveData->currentAtshRequest = "ATSH7D1";
// 2101
this->liveData->commandRequest = "22C101";
this->liveData->responseRowMerged = "62C1015FD7E7D0FFFF00FF04D0D400000000FF7EFF0030F5010000FFFF7F6307F207FE05FF00FF3FFFFFAAAAAAAAAAAA";
this->parseRowMerged();
// VMCU ATSH7E2
this->liveData->currentAtshRequest = "ATSH7E2";
// 2101
this->liveData->commandRequest = "2101";
this->liveData->responseRowMerged = "6101FFF8000009285A3B0648030000B4179D763404080805000000";
this->parseRowMerged();
// 2102
this->liveData->commandRequest = "2102";
this->liveData->responseRowMerged = "6102F8FFFC000101000000840FBF83BD33270680953033757F59291C76000001010100000007000000";
this->liveData->responseRowMerged = "6102F8FFFC000101000000931CC77F4C39040BE09BA7385D8158832175000001010100000007000000";
this->parseRowMerged();
// "ATSH7DF",
this->liveData->currentAtshRequest = "ATSH7DF";
// 2106
this->liveData->commandRequest = "2106";
this->liveData->responseRowMerged = "6106FFFF800000000000000200001B001C001C000600060006000E000000010000000000000000013D013D013E013E00";
this->parseRowMerged();
// AIRCON / ACU ATSH7B3
this->liveData->currentAtshRequest = "ATSH7B3";
// 220100
this->liveData->commandRequest = "220100";
this->liveData->responseRowMerged = "6201007E5027C8FF7F765D05B95AFFFF5AFF11FFFFFFFFFFFF6AFFFF2DF0757630FFFF00FFFF000000";
this->liveData->responseRowMerged = "6201007E5027C8FF867C58121010FFFF10FF8EFFFFFFFFFFFF10FFFF0DF0617900FFFF01FFFF000000";
this->parseRowMerged();
// BMS ATSH7E4
this->liveData->currentAtshRequest = "ATSH7E4";
// 220101
this->liveData->commandRequest = "220101";
this->liveData->responseRowMerged = "620101FFF7E7FF99000000000300B10EFE120F11100F12000018C438C30B00008400003864000035850000153A00001374000647010D017F0BDA0BDA03E8";
this->liveData->responseRowMerged = "620101FFF7E7FFB3000000000300120F9B111011101011000014CC38CB3B00009100003A510000367C000015FB000013D3000690250D018E0000000003E8";
this->parseRowMerged();
// 220102
this->liveData->commandRequest = "220102";
this->liveData->responseRowMerged = "620102FFFFFFFFCBCBCBCBCBCBCBCBCBCBCBCBCBCBCBCBCBCBCBCBCBCBCBCBCBCBCBCBCBCBCBCBAAAA";
this->parseRowMerged();
// 220103
this->liveData->commandRequest = "220103";
this->liveData->responseRowMerged = "620103FFFFFFFFCBCBCBCBCBCBCBCBCBCBCBCBCBCBCBCBCBCBCACBCACACFCCCBCBCBCBCBCBCBCBAAAA";
this->parseRowMerged();
// 220104
this->liveData->commandRequest = "220104";
this->liveData->responseRowMerged = "620104FFFFFFFFCBCBCBCBCBCBCBCBCBCBCBCBCBCBCBCBCBCBCBCBCBCBCBCBCBCBCBCBCBCBCBCBAAAA";
this->parseRowMerged();
// 220105
this->liveData->commandRequest = "220105";
this->liveData->responseRowMerged = "620105003fff9000000000000000000F8A86012B4946500101500DAC03E800000000AC0000C7C701000F00000000AAAA";
this->liveData->responseRowMerged = "620105003FFF90000000000000000014918E012927465000015013BB03E800000000BB0000CBCB01001300000000AAAA";
this->parseRowMerged();
// 220106
this->liveData->commandRequest = "220106";
this->liveData->responseRowMerged = "620106FFFFFFFF14001A00240000003A7C86B4B30000000928EA00";
this->parseRowMerged();
// BCM / TPMS ATSH7A0
this->liveData->currentAtshRequest = "ATSH7A0";
// 22c00b
this->liveData->commandRequest = "22c00b";
this->liveData->responseRowMerged = "62C00BFFFF0000B93D0100B43E0100B43D0100BB3C0100AAAAAAAA";
this->parseRowMerged();
// ATSH7C6
this->liveData->currentAtshRequest = "ATSH7C6";
// 22b002
this->liveData->commandRequest = "22b002";
this->liveData->responseRowMerged = "62B002E0000000FFB400330B0000000000000000";
this->parseRowMerged();
this->liveData->params.batModuleTempC[0] = 28;
this->liveData->params.batModuleTempC[1] = 29;
this->liveData->params.batModuleTempC[2] = 28;
this->liveData->params.batModuleTempC[3] = 30;
// This is more accurate than min/max from BMS. It's required to detect kona/eniro cold gates (min 15C is needed > 43kW charging, min 25C is needed > 58kW charging)
this->liveData->params.batMinC = this->liveData->params.batMaxC = this->liveData->params.batModuleTempC[0];
for (uint16_t i = 1; i < this->liveData->params.batModuleTempCount; i++) {
if (this->liveData->params.batModuleTempC[i] < this->liveData->params.batMinC)
this->liveData->params.batMinC = this->liveData->params.batModuleTempC[i];
if (this->liveData->params.batModuleTempC[i] > this->liveData->params.batMaxC)
this->liveData->params.batMaxC = this->liveData->params.batModuleTempC[i];
}
this->liveData->params.batTempC = this->liveData->params.batMinC;
//
this->liveData->params.soc10ced[10] = 2200;
this->liveData->params.soc10cec[10] = 2500;
this->liveData->params.soc10odo[10] = 13000;
this->liveData->params.soc10time[10] = 13000;
this->liveData->params.soc10ced[9] = this->liveData->params.soc10ced[10] + 6.4;
this->liveData->params.soc10cec[9] = this->liveData->params.soc10cec[10] + 0;
this->liveData->params.soc10odo[9] = this->liveData->params.soc10odo[10] + 30;
this->liveData->params.soc10time[9] = this->liveData->params.soc10time[10] + 900;
this->liveData->params.soc10ced[8] = this->liveData->params.soc10ced[9] + 6.8;
this->liveData->params.soc10cec[8] = this->liveData->params.soc10cec[9] + 0;
this->liveData->params.soc10odo[8] = this->liveData->params.soc10odo[9] + 30;
this->liveData->params.soc10time[8] = this->liveData->params.soc10time[9] + 900;
this->liveData->params.soc10ced[7] = this->liveData->params.soc10ced[8] + 7.2;
this->liveData->params.soc10cec[7] = this->liveData->params.soc10cec[8] + 0.6;
this->liveData->params.soc10odo[7] = this->liveData->params.soc10odo[8] + 30;
this->liveData->params.soc10time[7] = this->liveData->params.soc10time[8] + 900;
this->liveData->params.soc10ced[6] = this->liveData->params.soc10ced[7] + 6.7;
this->liveData->params.soc10cec[6] = this->liveData->params.soc10cec[7] + 0;
this->liveData->params.soc10odo[6] = this->liveData->params.soc10odo[7] + 30;
this->liveData->params.soc10time[6] = this->liveData->params.soc10time[7] + 900;
this->liveData->params.soc10ced[5] = this->liveData->params.soc10ced[6] + 6.7;
this->liveData->params.soc10cec[5] = this->liveData->params.soc10cec[6] + 0;
this->liveData->params.soc10odo[5] = this->liveData->params.soc10odo[6] + 30;
this->liveData->params.soc10time[5] = this->liveData->params.soc10time[6] + 900;
this->liveData->params.soc10ced[4] = this->liveData->params.soc10ced[5] + 6.4;
this->liveData->params.soc10cec[4] = this->liveData->params.soc10cec[5] + 0.3;
this->liveData->params.soc10odo[4] = this->liveData->params.soc10odo[5] + 30;
this->liveData->params.soc10time[4] = this->liveData->params.soc10time[5] + 900;
this->liveData->params.soc10ced[3] = this->liveData->params.soc10ced[4] + 6.4;
this->liveData->params.soc10cec[3] = this->liveData->params.soc10cec[4] + 0;
this->liveData->params.soc10odo[3] = this->liveData->params.soc10odo[4] + 30;
this->liveData->params.soc10time[3] = this->liveData->params.soc10time[4] + 900;
this->liveData->params.soc10ced[2] = this->liveData->params.soc10ced[3] + 5.4;
this->liveData->params.soc10cec[2] = this->liveData->params.soc10cec[3] + 0.1;
this->liveData->params.soc10odo[2] = this->liveData->params.soc10odo[3] + 30;
this->liveData->params.soc10time[2] = this->liveData->params.soc10time[3] + 900;
this->liveData->params.soc10ced[1] = this->liveData->params.soc10ced[2] + 6.2;
this->liveData->params.soc10cec[1] = this->liveData->params.soc10cec[2] + 0.1;
this->liveData->params.soc10odo[1] = this->liveData->params.soc10odo[2] + 30;
this->liveData->params.soc10time[1] = this->liveData->params.soc10time[2] + 900;
this->liveData->params.soc10ced[0] = this->liveData->params.soc10ced[1] + 2.9;
this->liveData->params.soc10cec[0] = this->liveData->params.soc10cec[1] + 0.5;
this->liveData->params.soc10odo[0] = this->liveData->params.soc10odo[1] + 15;
this->liveData->params.soc10time[0] = this->liveData->params.soc10time[1] + 900;
}
#endif // CARKIAENIRO_CPP

16
CarKiaEniro.h Normal file
View File

@@ -0,0 +1,16 @@
#ifndef CARKIAENIRO_H
#define CARKIAENIRO_H
#include "CarInterface.h"
class CarKiaEniro : public CarInterface {
private:
public:
void activateCommandQueue() override;
void parseRowMerged() override;
void loadTestData() override;
};
#endif // CARKIAENIRO_H

34
INSTALLATION.md Normal file
View File

@@ -0,0 +1,34 @@
# INSTALLATION
## Quick installation from binary files with ESP32 flash tool
M5STACK (Many thanks to DimZen)
https://docs.google.com/document/d/17vJmeveNfN0exQy9wKC-5igU8zzNjsuOn1DPuPV_yJA/edit?usp=sharing
TTGO-T4 (older)
https://docs.google.com/document/d/1nEezrtXY-8X6mQ1hiZVWDjBVse1sXQg1SlnizaRmJwU/edit?usp=sharing
## Installation from sources
- install arduino IDE + ESP32 support
- https://github.com/Bodmer/TFT_eSPI - display library
- Configure TFT eSPI
W:\Documents\Arduino\libraries\TFT_eSP\User_Setup_Select.h
```
// Comment
//#include <User_Setup.h> // Default setup is root library folder
// And uncomment
#include <User_Setups/Setup22_TTGO_T4_v1.3.h> // Setup file for ESP32 and TTGO T4 version 1.3
```
My configuration
- Board ESP32 Dev module
- Upload speed 921600
- CPU freq: 240MHz (Wifi/BT)
- Flash freq: 80MHz
- Flash mode: QIO
- Flash size 4MB (32mb)
- Partion scheme: default 4MB with spiffs
- Core debug level: none
- PSRAM: disable

37
LiveData.cpp Normal file
View File

@@ -0,0 +1,37 @@
#ifndef LIVEDATA_CPP
#define LIVEDATA_CPP
#include "LiveData.h"
/**
Hex to dec (1-2 byte values, signed/unsigned)
For 4 byte change int to long and add part for signed numbers
*/
float LiveData::hexToDec(String hexString, byte bytes, bool signedNum) {
unsigned int decValue = 0;
unsigned int nextInt;
for (int i = 0; i < hexString.length(); i++) {
nextInt = int(hexString.charAt(i));
if (nextInt >= 48 && nextInt <= 57) nextInt = map(nextInt, 48, 57, 0, 9);
if (nextInt >= 65 && nextInt <= 70) nextInt = map(nextInt, 65, 70, 10, 15);
if (nextInt >= 97 && nextInt <= 102) nextInt = map(nextInt, 97, 102, 10, 15);
nextInt = constrain(nextInt, 0, 15);
decValue = (decValue * 16) + nextInt;
}
// Unsigned - do nothing
if (!signedNum) {
return decValue;
}
// Signed for 1, 2 bytes
if (bytes == 1) {
return (decValue > 127 ? (float)decValue - 256.0 : decValue);
}
return (decValue > 32767 ? (float)decValue - 65536.0 : decValue);
}
//
#endif // LIVEDATA_CPP

View File

@@ -1,4 +1,13 @@
#ifndef LIVEDATA_H
#define LIVEDATA_H
#include <Arduino.h>
#include <stdint.h>
#include <WString.h>
#include <String.h>
#include <sys/time.h>
// SUPPORTED CARS
#define CAR_KIA_ENIRO_2020_64 0
#define CAR_HYUNDAI_KONA_2020_64 1
@@ -18,17 +27,6 @@
#define SCREEN_SOC10 6
#define SCREEN_DEBUG 7
// Commands loop
uint16_t commandQueueCount;
uint16_t commandQueueLoopFrom;
String commandQueue[300];
String responseRow;
String responseRowMerged;
uint16_t commandQueueIndex;
bool canSendNextAtCommand = false;
String commandRequest = "";
String currentAtshRequest = "";
// Structure with realtime values
typedef struct {
time_t currentTime;
@@ -143,34 +141,26 @@ typedef struct {
byte predrawnChargingGraphs; // 0 - off, 1 - on
} SETTINGS_STRUC;
class LiveData {
private:
public:
// Command loop
uint16_t commandQueueCount;
uint16_t commandQueueLoopFrom;
String commandQueue[300];
String responseRow;
String responseRowMerged;
uint16_t commandQueueIndex;
bool canSendNextAtCommand = false;
String commandRequest = "";
String currentAtshRequest = "";
//
PARAMS_STRUC params; // Realtime sensor values
SETTINGS_STRUC settings, tmpSettings; // Settings stored into flash
float hexToDec(String hexString, byte bytes = 2, bool signedNum = true);
};
/**
Hex to dec (1-2 byte values, signed/unsigned)
For 4 byte change int to long and add part for signed numbers
*/
float hexToDec(String hexString, byte bytes = 2, bool signedNum = true) {
unsigned int decValue = 0;
unsigned int nextInt;
for (int i = 0; i < hexString.length(); i++) {
nextInt = int(hexString.charAt(i));
if (nextInt >= 48 && nextInt <= 57) nextInt = map(nextInt, 48, 57, 0, 9);
if (nextInt >= 65 && nextInt <= 70) nextInt = map(nextInt, 65, 70, 10, 15);
if (nextInt >= 97 && nextInt <= 102) nextInt = map(nextInt, 97, 102, 10, 15);
nextInt = constrain(nextInt, 0, 15);
decValue = (decValue * 16) + nextInt;
}
// Unsigned - do nothing
if (!signedNum) {
return decValue;
}
// Signed for 1, 2 bytes
if (bytes == 1) {
return (decValue > 127 ? (float)decValue - 256.0 : decValue);
}
return (decValue > 32767 ? (float)decValue - 65536.0 : decValue);
}
//
#endif // LIVEDATA_H

112
README.md
View File

@@ -34,13 +34,14 @@ Others
## Quick installation with ESP32 flash tool
M5STACK (Many thanks to DimZen)
See INSTALLATION.md
https://docs.google.com/document/d/17vJmeveNfN0exQy9wKC-5igU8zzNjsuOn1DPuPV_yJA/edit?usp=sharing
## RELEASE NOTES
see. RELEASENOTES.md file
TTGO-T4 (older)
## Installation from sources
https://docs.google.com/document/d/1nEezrtXY-8X6mQ1hiZVWDjBVse1sXQg1SlnizaRmJwU/edit?usp=sharing
See INSTALLATION.md
## Screens and shortcuts
- Middle button - menu
@@ -56,110 +57,7 @@ Screen list
- no6. consumption table. Can be used to measure available battery capacity!
- no7. debug screen (default off in the menu)
![image](https://github.com/nickn17/enirodashboard/blob/master/screenshots/v1.jpg)
[![Watch the video](https://github.com/nickn17/enirodashboard/blob/master/screenshots/v0.9.jpg)](https://www.youtube.com/watch?v=Jg5VP2P58Yg&)
### v1.8.3 2020-11-28
- Automatic shutdown when car goes off
- Fixed M5stack speaker noise
- Fixed menu, added scroll support
### v1.8.2 2020-11-25
- Removed screen flickering. (via Sprites, esp32 with SRAM is now required!)
- Code cleaning. Removed force no/yes redraw mode. Not required with sprites
- Arrow for current (based on bat.temperature) pre-drawn charging graph
### v1.8.1 2020-11-23
- Pre-drawn charging graphs (based on coldgates)
- Show version in menu
### v1.8.0 2020-11-20
- Support for new device m5stack core1 iot development kit
- TTGO T4 is still supported device!
### v1.7.5 2020-11-17
- Settings: Debug screen off/on
- Settings: LCD brightness (auto, 20, 50, 100%)
- Speed screen: added motor rpm, brake lights indicator
- Soc% to kWh is now calibrated for NiroEV/KonaEV 2020
- eNiroDashboard speed improvements
### v1.7.4 2020-11-12
- Added default screen option to settings
- Initial config for Renault ZOE 22kWh
- ODB response analyzer. Please help community to decode unknown values like BMS valves, heater ON switch,...
https://docs.google.com/spreadsheets/d/1eT2R8hmsD1hC__9LtnkZ3eDjLcdib9JR-3Myc97jy8M/edit?usp=sharing
### v1.7.3 2020-11-11
- Headlights reminder (if drive mode & headlights are off)
### v1.7.2 2020-11-10
- improved charging graph
### v1.7.1 2020-10-20
- added new screen 1 - auto mode
- automatically shows screen 3 - speed when speed is >5kph
- screen 5 chargin graph when power kw > 1kW
- added bat.fan status and fan feedback in Hz for Ioniq
### v1.7 2020-09-16
- added support for 39.2kWh Hyundai Kona and Kia e-Niro
- added initial support for Hyundai Ioniq 28kWh (not working yet)
### v1.6 2020-06-30
- fixed ble device pairing
- added command to set protocol ISO 15765-4 CAN (11 bit ID, 500 kbit/s) - some vgate adapters freezes during "init at command" phase
### v1.5 2020-06-03
- added support for different units (miles, fahrenheits, psi)
### v1.4 2020-05-29
- added menu
- Pairing with VGATE iCar Pro BLE4 adapter via menu!
- Installation with flash tool. You don't have to install Arduino and compile sources :)
- New screen 5. Conpumption... Can be used to measure available battery capacity!
- Load/Save settings
- Flip screen vertical option
- Several different improvements
### v1.1 2020-04-12
- added new screens (switch via left button)
- screen 0. (blank screen, lcd off)
- screen 1. (default) summary info
- screen 2. speed kmh + kwh/100km (or kw for discharge)
- screen 3. battery cells + battery module temperatures
- screen 4. charging graph
- added low batery temperature detection for slow charging on 50kW DC (15°C) and UFC >70kW (25°C).
### v1.0 2020-03-23
- first release
- basic dashboard
## About T4
ESP32-TTGO-T4
https://github.com/fdufnews/ESP32-TTGO-T4
## Installation from sources
- install arduino IDE + ESP32 support
- https://github.com/Bodmer/TFT_eSPI - display library
- Configure TFT eSPI
W:\Documents\Arduino\libraries\TFT_eSP\User_Setup_Select.h
```
// Comment
//#include <User_Setup.h> // Default setup is root library folder
// And uncomment
#include <User_Setups/Setup22_TTGO_T4_v1.3.h> // Setup file for ESP32 and TTGO T4 version 1.3
```
My configuration
- Board ESP32 Dev module
- Upload speed 921600
- CPU freq: 240MHz (Wifi/BT)
- Flash freq: 80MHz
- Flash mode: QIO
- Flash size 4MB (32mb)
- Partion scheme: default 4MB with spiffs
- Core debug level: none
- PSRAM: disable

81
RELEASENOTES.md Normal file
View File

@@ -0,0 +1,81 @@
# RELEASE NOTES
### v1.9.0 2020-11-30
- Refactoring (classes)
### v1.8.3 2020-11-28
- Automatic shutdown when car goes off
- Fixed M5stack speaker noise
- Fixed menu, added scroll support
### v1.8.2 2020-11-25
- Removed screen flickering. (via Sprites, esp32 with SRAM is now required!)
- Code cleaning. Removed force no/yes redraw mode. Not required with sprites
- Arrow for current (based on bat.temperature) pre-drawn charging graph
### v1.8.1 2020-11-23
- Pre-drawn charging graphs (based on coldgates)
- Show version in menu
### v1.8.0 2020-11-20
- Support for new device m5stack core1 iot development kit
- TTGO T4 is still supported device!
### v1.7.5 2020-11-17
- Settings: Debug screen off/on
- Settings: LCD brightness (auto, 20, 50, 100%)
- Speed screen: added motor rpm, brake lights indicator
- Soc% to kWh is now calibrated for NiroEV/KonaEV 2020
- eNiroDashboard speed improvements
### v1.7.4 2020-11-12
- Added default screen option to settings
- Initial config for Renault ZOE 22kWh
- ODB response analyzer. Please help community to decode unknown values like BMS valves, heater ON switch,...
https://docs.google.com/spreadsheets/d/1eT2R8hmsD1hC__9LtnkZ3eDjLcdib9JR-3Myc97jy8M/edit?usp=sharing
### v1.7.3 2020-11-11
- Headlights reminder (if drive mode & headlights are off)
### v1.7.2 2020-11-10
- improved charging graph
### v1.7.1 2020-10-20
- added new screen 1 - auto mode
- automatically shows screen 3 - speed when speed is >5kph
- screen 5 chargin graph when power kw > 1kW
- added bat.fan status and fan feedback in Hz for Ioniq
### v1.7 2020-09-16
- added support for 39.2kWh Hyundai Kona and Kia e-Niro
- added initial support for Hyundai Ioniq 28kWh (not working yet)
### v1.6 2020-06-30
- fixed ble device pairing
- added command to set protocol ISO 15765-4 CAN (11 bit ID, 500 kbit/s) - some vgate adapters freezes during "init at command" phase
### v1.5 2020-06-03
- added support for different units (miles, fahrenheits, psi)
### v1.4 2020-05-29
- added menu
- Pairing with VGATE iCar Pro BLE4 adapter via menu!
- Installation with flash tool. You don't have to install Arduino and compile sources :)
- New screen 5. Conpumption... Can be used to measure available battery capacity!
- Load/Save settings
- Flip screen vertical option
- Several different improvements
### v1.1 2020-04-12
- added new screens (switch via left button)
- screen 0. (blank screen, lcd off)
- screen 1. (default) summary info
- screen 2. speed kmh + kwh/100km (or kw for discharge)
- screen 3. battery cells + battery module temperatures
- screen 4. charging graph
- added low batery temperature detection for slow charging on 50kW DC (15°C) and UFC >70kW (25°C).
### v1.0 2020-03-23
- first release
- basic dashboard

View File

@@ -1,518 +0,0 @@
#define commandQueueCountDebugObd2Kia 256
#define commandQueueLoopFromDebugObd2Kia 8
String commandQueueDebugObd2Kia[commandQueueCountDebugObd2Kia] = {
"AT Z", // Reset all
"AT I", // Print the version ID
"AT E0", // Echo off
"AT L0", // Linefeeds off
"AT S0", // Printing of spaces on
"AT SP 6", // Select protocol to ISO 15765-4 CAN (11 bit ID, 500 kbit/s)
"AT DP",
"AT ST16",
// Loop from here
// Request ID Response ID ECU name Can bus Protocol Description
// 725 72D WPS B Wireless phone charger
//"ATSH725",
//"2201", // All with negative resp. "2202", "2203", "2101", "2102", "220101", "220102", "22B001", "22C001", "22C101",
// 736 73E VESS P Virtual Engine Sound system
//"ATSH736",
//"2201", // All with negative resp. "2202", "2203", "2101", "2102",
//"220101", // All with 62 response "220102", "22B001", "22C001", "22C101",
// 755 75D BSD Right Blind spot detection Right
// "ATSH755",
// "2201", // ALL with negative 7F2213, etc "2202", "2203", "2101", "2102", "220101", "220102", "22B001", "22C001", "22C101",
// 770 778 IGPM All UDS Integrated Gateway and power control module
"ATSH770",
"22BC01", // 009 62BC01400000000001AAAAAAAA
"22BC02", // 62BC0200000000
"22BC03", // 00B 62BC03FDEE7C730A600000AAAA
"22BC04", // 00B 62BC04B33F74EA0D002042AAAA
"22BC05", // 00B 62BC05BF13200001000000AAAA
"22BC06", // 00B 62BC06B48000002C000000AAAA
"22BC07", // 00B 62BC070849DBC000101900AAAA
//"22BC08", // ALL with NEGATIVE RESPONSE "22BC09", "22BC0A", "22BC0B", "22BC0C", "22BC0D", "22BC0E", "22BC0F",
// 783 78B AMP M Amplifier
//"ATSH783",
// "2201",// ALL with NEGATIVE RESPONSE "2202", "2203", "2101", "2102", "220101", "220102", "22B001", "22C001", "22C101",
// 796 79E PGS C Parking Guide System
//"ATSH796",
//"2201", // ALL with NEGATIVE RESPONSE "2202", "2203", "2101", "2102", "220101", "220102", "22B001", "22C001", "22C101",
// 7A0 7A8 BCM / TPMS B UDS Body control module 22 B0 01 to 22 B0 0E
// C Tire Pressure Monitoring "At least 22 C0 01 to 22 C0 02 & 22 C0 0B to 22 C0 0F"
"ATSH7A0",
"22B001", // 016 62B00140C20000000000000000000001010000000001AAAAAAAAAA
"22B002", // 009 62B002C00000000300AAAAAAAA
"22B003", // 018 62B003BFCB8000A23D63B164F8F7F73DF80000A400A4A4A4AAAAAA
"22B004", // 00B 62B0047402994E0E008800AAAA
"22B005", // 00B 62B0052000100000000800AAAA
"22B006", // 00B 62B0062000000000000000AAAA
"22B007", // 00B 62B007002001E000040000AAAA
"22B008", // 00B 62B00800510C2000880004AAAA
"22B009", // 00B 62B009FEEEFEEE08000800AAAA
"22B00A", // 00B 62B00AE3FEE3000040C500AAAA
//"22B00B", // 7F2231
"22B00C", // 00B 62B00C3F00000000000000AAAA
"22B00D", // 00B 62B00DFCFCFC0000000000AAAA
"22B00E", // 00B 62B00E0800000000000000AAAA
//"22B00F", // 7F2231
"22C001", // 01D 62C001000000002E2E02500706B5B50A098C3C0000000001FF01000101AAAAAAAAAA
"22C002", // 017 62C002FFFF0000D2E149F3D2DBDACBD2E84EBBD2E84E93AAAAAAAA
"22C003", // 021 62C00300000000444F303101002E2E02500706B5B50A098C3C0000000001FF0100AA
"22C004", // 021 62C004000000004E41303101002E2E024B0005B5B508088C3C0100000001FF0100AA
"22C005", // 021 62C005000000004E54504D0100302F02500000ABAB00008C3C0000030001FF0000AA
"22C006", // 021 62C00600000000444F303201002E2E02500706B5AB0A098C3C0000000001010100AA
"22C007", // 021 62C007000000004E41303201002E2E024B0005B5AB08088C3C0100000001010100AA
"22C008", // 021 62C00800000000434E303101002E2E02500706B5B50A098C3C0000020001FF0100AA
"22C009", // 021 62C00900000000303030360000FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFAA
"22C00A", // 021 62C00A00000000303030370000FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFAA
"22C00B", // 017 62C00BFFFF0000AF470100B4480100B5460100B3460100AAAAAAAA
"22C00C", // 025 62C00CFFFF03000000000000FFFF0000000000000000FFFF0000000000000000FFFF000000AAAAAAAA
"22C00D", // 025 62C00DFFFF03000000000000FFFF0000000000000000FFFF0000000000000000FFFF000000AAAAAAAA
"22C00E", // 025 62C00EFFFF03000000000000FFFF0000000000000000FFFF0000000000000000FFFF000000AAAAAAAA
"22C00F", // 025 62C00FFFFF03000000000000FFFF0000000000000000FFFF0000000000000000FFFF000000AAAAAAAA
// 7A1 7A9 DDM B Driver door module
// "ATSH7A1",
// "2201", // All with NO DATA "2202", "2203", "2101", "2102", "220101", "220102", "22B001", "22C001", "22C101",
// 7A2 7AA ADM B Assist door module
//"ATSH7A2",
// "2201", // ALL with NO DATA "2202", "2203", "2101", "2102", "220101", "220102", "22B001", "22C001", "22C101",
// 7A3 7AB PSM B UDS Power Seat Module
// "ATSH7A3",
// "22B401", // All with NO DATA "22B402", "22B403", "22B404", "22B405", "22B406", "22B407", "22B408", "22B409", "22B40A",
// 7A5 7AD SMK B UDS Smart Key
"ATSH7A5",
"22B001", // 7F2278 7F2231
"22B002", // positive
"22B003", // positive
"22B004", // 7F2278 7F2231
"22B005", // positive
"22B006", // positive
"22B007", // positive
"22B008", // positive
"22B009", // positive
"22B00A", // positive
// 7B3 7BB AIRCON / ACU UDS Aircondition
"ATSH7B3",
"220100", // 026 6201007E5027C8FF7C6D6B05EFBCFFFFEFFF10FFFFFFFFFFFFBFFFFF52B3919900FFFF01FFFF000000 in/out temp
// "220101", // 7F2231
"220102", // 014 620102FFF80000B36B0101000101003C00016E12 coolant temp1, 2
// "220103", // 7F2231
// 7B7 7BF BSD Left Blind spot detection Left
"ATSH7B7",
// "2201", // ALL NEGATIVE RESP "2202", "2203", "2101", "2102", "220101", "220102", "22B001", "22C001", "22C101",
// 7C4 7CC MFC Multi Function Camera
"ATSH7C4",
"220101", // 6201010E
"220102", // 62010200000000
// 7C6 7CE CM C & M UDS Cluster Module
"ATSH7C6",
"22B001", // 008 62B00100000000000000000000
"22B002", // 00F 62B002E0000000FFA200AD8F0000000000000000 odo
"22B003", // 008 62B00398000000010000000000
//"22B004", // NO DATA
// 7D0 7D8 AEB UDS? Autonomous Emergency Breaking
// "ATSH7D0",
// "2201", // ALL CODES WITH NEGATIVE RESPONSE
// "2202", // "2203", // "2101", // "2102", // "220101", // "220102", // "22B001", // "22C001", // "22C101",
// 7D1 7D9 ABS / ESP + AHB UDS
"ATSH7D1",
"22C101", // 02A 62C1015FD7E7D0FFFF00FF04D0D400000000FF7EFF0030F5010000FFFF7F6307F207FE05FF00FF3FFFFFAAAAAAAAAAAA
"22C102", // 01A 62C10237000000FFFFFFFFFFFF00FF05FFFFFF00FF5501FFFFFFAA
"22C103", // 01A 62C103BE3000000DFFF0FCFE7FFF7FFFFFFFFFFF000005B50000AA
// 7D2 7DA AIRBAG SRS Sytem
// "ATSH7D2",
// "2101", // 7F2211
// "2102", // 7F2211
// "220101", // 7F2211
// "220102", // 7F2211
// "22B001", // 7F2211
// "22C001", // 7F2211
// "22C101", // 7F2211
// 7D4 7DC EPS Electric power steering
"ATSH7D4",
//"2101", // 7F2121
//"2102", // 7F2121
"220101", // 012 6201018387FD009DFFF90100000010101921AAAA
"220102", // 008 6201020000000500AAAAAAAAAA
// "22B001", // 7F2231
// "22C001", // 7F2231
// "22C101", // 7F2231
// 7DF UNKNOWN
//"ATSH7DF",
//"2106", // 013 7F2112 028 6106FFFF800000000000000300001C001C001C000600060006000F000000010000000000000000015801580158015700
//"220106", // 01B 620106FFFFFFFF12001200307C7C00317C830000B4B3000A28EA00
// 7E2 7EA VMCU H & P KWP2000 Vehicle Motor Control Unit 21 01 to 21 02 & 1A 80++
"ATSH7E2",
"2101", // 018 6101FFF8000009285A3806480300000000C4693404080805000000 speed, ...
"2102", // 027 6102F8FFFC000101000000851BB5780234FA0BAB8D1933E07F5B211C74000001010100000007000000 aux, ...
//"2103", // 7F2112
//"1A80", // Working VIN 1A 8A 8C 8D ...
// 7E3 7EB MCU H & P KWP2000 Motor Control Unit 21 01 to 21 06
"ATSH7E3",
"2101", // 01E 610100007FFF0C3C00BD8D0A3300B00900002D0252025033D500C3FF68FF00000000
"2102", // 03A 610207FFFFFF00000D000D00260008080909000001004614CDABC2CD3F005581720085CAF5265D0DC1CD0000EC3400000000000000000000FF0000000000
"2103", // 06E 610300007FFF0000000000000000000000000000000000005C010E02FDFD040400000000000000000000000048058D0C0200160000000000AA3F000005000000AE0102000000000000000000000000000000000000000000BB0B00000000000000000000680000000000E803000000
"2104", // 060 6104000001FF000000000000D7425D03000000000000050000007A2B00000000000000003200000000000000000000000000000000000000000000000000000000000000010000000100010001000000030000000000000000006D0000008E1B00
"2105", // 067 6105000001FF630200010000005900000C00630200010000000100000C006B0200020000003300250D0136010096BA03000100000C000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000
"2106", // 013 6106000000030000000000000000000000000300
//"2107", // 7F2112
// 7E4 7EC BMS P UDS Battery Management System 22 01 01 to 22 01 06
"ATSH7E4",
"220101", // 03E 620101FFF7E7FF6B0000000003001C0E2F161414141513000012B930B9380000830003E1E30003C95B0001722C00015B5B0040D1660D016B0000000003E8 power kw, ...
"220102", // 027 620102FFFFFFFFB9B9B9B9B9B9B9B9B9B9B9B9B9B9B9B9B9B9B9B9B9B9B9B9B9B9B9B9B9B9B9B9AAAA cell voltages, screen 3 only
"220103", // 027 620103FFFFFFFFB9B9B9B9B9B9B9B9B9B9B9B9B9B9B9B9B9B9B9B9B9B9B9B9B9B9B9B9B9B9B9B9AAAA cell voltages, screen 3 only
"220104", // 027 620104FFFFFFFFB9B9B9B9B9B9B9B9B9B9B9B9B9B9B9B9B9B9B9B9B9B9B9B9B9B9B9B9B9B9B9B9AAAA
"220105", // 02E 620105003FFF90000000000000000012836A0142684268000150126E03E8000000006E0000B9B900000F00000000AAAA soh, soc, ..
"220106", // 01B 620106FFFFFFFF12001200307C7C00007C030000B4B3000A28EA00 cooling water temp
// "220107", // 7F2231
// 7E5 7ED OBC KWP2000 OnBoard Charger 21 01 to 21 03
"ATSH7E5",
"2101", // 01A 6101DFE0000001010001000000000E2F0533051D0078000000C800
"2102", // 011 6102FE000000000403E8000001BF000028000000
"2103", // 039 6103FFFFFDF80000000000000000000000000000000000000000000000000000000000000000007576767600000000000000000004000400030000000000
"2104", // 022 6104FFF000000A280A280A280000E324006900000003000000000000000000000000
"2105", // 046 61050000000081AA791E8013791E779C791E8BD37907874A79108D67791473777915727E7914753179156FAE7917768F79147650792876257930757E7914759379167545791D000000000000
"2106", // 028 6106FFFF8000001C001C001C000600060006000E000000010000000000000000015801580158015800
//"2107", // ret 7F2112
// 7E6 7EE ?? ?? 21 08 05 to 21 08 0F -> All negative response
//"ATSH7E6",
//"210805", // ret 7F2112
//"210806", // ret 7F2112
//"210807", // ret 7F2112
};
/**
Init command queue
*/
bool activateCommandQueueForDebugObd2Kia() {
// 39 or 64 kWh model?
params.batteryTotalAvailableKWh = 64;
// Empty and fill command queue
for (uint16_t i = 0; i < 300; i++) {
commandQueue[i] = "";
}
for (uint16_t i = 0; i < commandQueueCountDebugObd2Kia; i++) {
commandQueue[i] = commandQueueDebugObd2Kia[i];
}
commandQueueLoopFrom = commandQueueLoopFromDebugObd2Kia;
commandQueueCount = commandQueueCountDebugObd2Kia;
return true;
}
/**
Parse merged row
*/
bool parseRowMergedDebugObd2Kia() {
// VMCU 7E2
if (currentAtshRequest.equals("ATSH7E2")) {
if (commandRequest.equals("2101")) {
params.speedKmh = hexToDec(responseRowMerged.substring(32, 36).c_str(), 2, false) * 0.0155; // / 100.0 *1.609 = real to gps is 1.750
if (params.speedKmh < -99 || params.speedKmh > 200)
params.speedKmh = 0;
}
if (commandRequest.equals("2102")) {
params.auxPerc = hexToDec(responseRowMerged.substring(50, 52).c_str(), 1, false);
params.auxCurrentAmp = - hexToDec(responseRowMerged.substring(46, 50).c_str(), 2, true) / 1000.0;
}
}
// Cluster module 7c6
if (currentAtshRequest.equals("ATSH7C6")) {
if (commandRequest.equals("22B002")) {
params.odoKm = float(strtol(responseRowMerged.substring(18, 24).c_str(), 0, 16));
}
}
// Aircon 7b3
if (currentAtshRequest.equals("ATSH7B3")) {
if (commandRequest.equals("220100")) {
params.indoorTemperature = (hexToDec(responseRowMerged.substring(16, 18).c_str(), 1, false) / 2) - 40;
params.outdoorTemperature = (hexToDec(responseRowMerged.substring(18, 20).c_str(), 1, false) / 2) - 40;
}
if (commandRequest.equals("220102") && responseRowMerged.substring(12, 14) == "00") {
params.coolantTemp1C = (hexToDec(responseRowMerged.substring(14, 16).c_str(), 1, false) / 2) - 40;
params.coolantTemp2C = (hexToDec(responseRowMerged.substring(16, 18).c_str(), 1, false) / 2) - 40;
}
}
// BMS 7e4
if (currentAtshRequest.equals("ATSH7E4")) {
if (commandRequest.equals("220101")) {
params.cumulativeEnergyChargedKWh = float(strtol(responseRowMerged.substring(82, 90).c_str(), 0, 16)) / 10.0;
if (params.cumulativeEnergyChargedKWhStart == -1)
params.cumulativeEnergyChargedKWhStart = params.cumulativeEnergyChargedKWh;
params.cumulativeEnergyDischargedKWh = float(strtol(responseRowMerged.substring(90, 98).c_str(), 0, 16)) / 10.0;
if (params.cumulativeEnergyDischargedKWhStart == -1)
params.cumulativeEnergyDischargedKWhStart = params.cumulativeEnergyDischargedKWh;
params.auxVoltage = hexToDec(responseRowMerged.substring(64, 66).c_str(), 2, true) / 10.0;
params.batPowerAmp = - hexToDec(responseRowMerged.substring(26, 30).c_str(), 2, true) / 10.0;
params.batVoltage = hexToDec(responseRowMerged.substring(30, 34).c_str(), 2, false) / 10.0;
params.batPowerKw = (params.batPowerAmp * params.batVoltage) / 1000.0;
params.batPowerKwh100 = params.batPowerKw / params.speedKmh * 100;
params.batCellMaxV = hexToDec(responseRowMerged.substring(52, 54).c_str(), 1, false) / 50.0;
params.batCellMinV = hexToDec(responseRowMerged.substring(56, 58).c_str(), 1, false) / 50.0;
params.batModuleTempC[0] = hexToDec(responseRowMerged.substring(38, 40).c_str(), 1, true);
params.batModuleTempC[1] = hexToDec(responseRowMerged.substring(40, 42).c_str(), 1, true);
params.batModuleTempC[2] = hexToDec(responseRowMerged.substring(42, 44).c_str(), 1, true);
params.batModuleTempC[3] = hexToDec(responseRowMerged.substring(44, 46).c_str(), 1, true);
//params.batTempC = hexToDec(responseRowMerged.substring(36, 38).c_str(), 1, true);
//params.batMaxC = hexToDec(responseRowMerged.substring(34, 36).c_str(), 1, true);
//params.batMinC = hexToDec(responseRowMerged.substring(36, 38).c_str(), 1, true);
// This is more accurate than min/max from BMS. It's required to detect kona/eniro cold gates (min 15C is needed > 43kW charging, min 25C is needed > 58kW charging)
params.batMinC = params.batMaxC = params.batModuleTempC[0];
params.batMinC = (params.batModuleTempC[1] < params.batMinC) ? params.batModuleTempC[1] : params.batMinC;
params.batMinC = (params.batModuleTempC[2] < params.batMinC) ? params.batModuleTempC[2] : params.batMinC;
params.batMinC = (params.batModuleTempC[3] < params.batMinC) ? params.batModuleTempC[3] : params.batMinC;
params.batMaxC = (params.batModuleTempC[1] > params.batMaxC) ? params.batModuleTempC[1] : params.batMaxC;
params.batMaxC = (params.batModuleTempC[2] > params.batMaxC) ? params.batModuleTempC[2] : params.batMaxC;
params.batMaxC = (params.batModuleTempC[3] > params.batMaxC) ? params.batModuleTempC[3] : params.batMaxC;
params.batTempC = params.batMinC;
params.batInletC = hexToDec(responseRowMerged.substring(50, 52).c_str(), 1, true);
if (params.speedKmh < 10 && params.batPowerKw >= 1 && params.socPerc > 0 && params.socPerc <= 100) {
if ( params.chargingGraphMinKw[int(params.socPerc)] == -100 || params.batPowerKw < params.chargingGraphMinKw[int(params.socPerc)])
params.chargingGraphMinKw[int(params.socPerc)] = params.batPowerKw;
if ( params.chargingGraphMaxKw[int(params.socPerc)] == -100 || params.batPowerKw > params.chargingGraphMaxKw[int(params.socPerc)])
params.chargingGraphMaxKw[int(params.socPerc)] = params.batPowerKw;
params.chargingGraphBatMinTempC[int(params.socPerc)] = params.batMinC;
params.chargingGraphBatMaxTempC[int(params.socPerc)] = params.batMaxC;
params.chargingGraphHeaterTempC[int(params.socPerc)] = params.batHeaterC;
}
}
// BMS 7e4
if (commandRequest.equals("220102") && responseRowMerged.substring(12, 14) == "FF") {
for (int i = 0; i < 32; i++) {
params.cellVoltage[i] = hexToDec(responseRowMerged.substring(14 + (i * 2), 14 + (i * 2) + 2).c_str(), 1, false) / 50;
}
}
// BMS 7e4
if (commandRequest.equals("220103")) {
for (int i = 0; i < 32; i++) {
params.cellVoltage[32 + i] = hexToDec(responseRowMerged.substring(14 + (i * 2), 14 + (i * 2) + 2).c_str(), 1, false) / 50;
}
}
// BMS 7e4
if (commandRequest.equals("220104")) {
for (int i = 0; i < 32; i++) {
params.cellVoltage[64 + i] = hexToDec(responseRowMerged.substring(14 + (i * 2), 14 + (i * 2) + 2).c_str(), 1, false) / 50;
}
}
// BMS 7e4
if (commandRequest.equals("220105")) {
params.socPercPrevious = params.socPerc;
params.sohPerc = hexToDec(responseRowMerged.substring(56, 60).c_str(), 2, false) / 10.0;
params.socPerc = hexToDec(responseRowMerged.substring(68, 70).c_str(), 1, false) / 2.0;
// Soc10ced table, record x0% CEC/CED table (ex. 90%->89%, 80%->79%)
if (params.socPercPrevious - params.socPerc > 0) {
byte index = (int(params.socPerc) == 4) ? 0 : (int)(params.socPerc / 10) + 1;
if ((int(params.socPerc) % 10 == 9 || int(params.socPerc) == 4) && params.soc10ced[index] == -1) {
struct tm now;
getLocalTime(&now, 0);
time_t time_now_epoch = mktime(&now);
params.soc10ced[index] = params.cumulativeEnergyDischargedKWh;
params.soc10cec[index] = params.cumulativeEnergyChargedKWh;
params.soc10odo[index] = params.odoKm;
params.soc10time[index] = time_now_epoch;
}
}
params.batHeaterC = hexToDec(responseRowMerged.substring(52, 54).c_str(), 1, true);
//
for (int i = 30; i < 32; i++) { // ai/aj position
params.cellVoltage[96 - 30 + i] = hexToDec(responseRowMerged.substring(14 + (i * 2), 14 + (i * 2) + 2).c_str(), 1, false) / 50;
}
}
// BMS 7e4
if (commandRequest.equals("220106")) {
params.coolingWaterTempC = hexToDec(responseRowMerged.substring(14, 16).c_str(), 1, false);
}
}
// TPMS 7a0
if (currentAtshRequest.equals("ATSH7A0")) {
if (commandRequest.equals("22c00b")) {
params.tireFrontLeftPressureBar = hexToDec(responseRowMerged.substring(14, 16).c_str(), 2, false) / 72.51886900361; // === OK Valid *0.2 / 14.503773800722
params.tireFrontRightPressureBar = hexToDec(responseRowMerged.substring(22, 24).c_str(), 2, false) / 72.51886900361; // === OK Valid *0.2 / 14.503773800722
params.tireRearRightPressureBar = hexToDec(responseRowMerged.substring(30, 32).c_str(), 2, false) / 72.51886900361; // === OK Valid *0.2 / 14.503773800722
params.tireRearLeftPressureBar = hexToDec(responseRowMerged.substring(38, 40).c_str(), 2, false) / 72.51886900361; // === OK Valid *0.2 / 14.503773800722
params.tireFrontLeftTempC = hexToDec(responseRowMerged.substring(16, 18).c_str(), 2, false) - 50; // === OK Valid
params.tireFrontRightTempC = hexToDec(responseRowMerged.substring(24, 26).c_str(), 2, false) - 50; // === OK Valid
params.tireRearRightTempC = hexToDec(responseRowMerged.substring(32, 34).c_str(), 2, false) - 50; // === OK Valid
params.tireRearLeftTempC = hexToDec(responseRowMerged.substring(40, 42).c_str(), 2, false) - 50; // === OK Valid
}
}
return true;
}
/**
Test data
*/
bool testDataDebugObd2Kia() {
// VMCU ATSH7E2
currentAtshRequest = "ATSH7E2";
// 2101
commandRequest = "2101";
responseRowMerged = "6101FFF8000009285A3B0648030000B4179D763404080805000000";
parseRowMergedDebugObd2Kia();
// 2102
commandRequest = "2102";
responseRowMerged = "6102F8FFFC000101000000840FBF83BD33270680953033757F59291C76000001010100000007000000";
responseRowMerged = "6102F8FFFC000101000000931CC77F4C39040BE09BA7385D8158832175000001010100000007000000";
parseRowMergedDebugObd2Kia();
// "ATSH7DF",
currentAtshRequest = "ATSH7DF";
// 2106
commandRequest = "2106";
responseRowMerged = "6106FFFF800000000000000200001B001C001C000600060006000E000000010000000000000000013D013D013E013E00";
parseRowMergedDebugObd2Kia();
// AIRCON / ACU ATSH7B3
currentAtshRequest = "ATSH7B3";
// 220100
commandRequest = "220100";
responseRowMerged = "6201007E5027C8FF7F765D05B95AFFFF5AFF11FFFFFFFFFFFF6AFFFF2DF0757630FFFF00FFFF000000";
responseRowMerged = "6201007E5027C8FF867C58121010FFFF10FF8EFFFFFFFFFFFF10FFFF0DF0617900FFFF01FFFF000000";
parseRowMergedDebugObd2Kia();
// BMS ATSH7E4
currentAtshRequest = "ATSH7E4";
// 220101
commandRequest = "220101";
responseRowMerged = "620101FFF7E7FF99000000000300B10EFE120F11100F12000018C438C30B00008400003864000035850000153A00001374000647010D017F0BDA0BDA03E8";
responseRowMerged = "620101FFF7E7FFB3000000000300120F9B111011101011000014CC38CB3B00009100003A510000367C000015FB000013D3000690250D018E0000000003E8";
parseRowMergedDebugObd2Kia();
// 220102
commandRequest = "220102";
responseRowMerged = "620102FFFFFFFFCBCBCBCBCBCBCBCBCBCBCBCBCBCBCBCBCBCBCBCBCBCBCBCBCBCBCBCBCBCBCBCBAAAA";
parseRowMergedDebugObd2Kia();
// 220103
commandRequest = "220103";
responseRowMerged = "620103FFFFFFFFCBCBCBCBCBCBCBCBCBCBCBCBCBCBCBCBCBCBCACBCACACFCCCBCBCBCBCBCBCBCBAAAA";
parseRowMergedDebugObd2Kia();
// 220104
commandRequest = "220104";
responseRowMerged = "620104FFFFFFFFCBCBCBCBCBCBCBCBCBCBCBCBCBCBCBCBCBCBCBCBCBCBCBCBCBCBCBCBCBCBCBCBAAAA";
parseRowMergedDebugObd2Kia();
// 220105
commandRequest = "220105";
responseRowMerged = "620105003fff9000000000000000000F8A86012B4946500101500DAC03E800000000AC0000C7C701000F00000000AAAA";
responseRowMerged = "620105003FFF90000000000000000014918E012927465000015013BB03E800000000BB0000CBCB01001300000000AAAA";
parseRowMergedDebugObd2Kia();
// 220106
commandRequest = "220106";
responseRowMerged = "620106FFFFFFFF14001A00240000003A7C86B4B30000000928EA00";
parseRowMergedDebugObd2Kia();
// BCM / TPMS ATSH7A0
currentAtshRequest = "ATSH7A0";
// 22c00b
commandRequest = "22c00b";
responseRowMerged = "62C00BFFFF0000B93D0100B43E0100B43D0100BB3C0100AAAAAAAA";
parseRowMergedDebugObd2Kia();
// ATSH7C6
currentAtshRequest = "ATSH7C6";
// 22b002
commandRequest = "22b002";
responseRowMerged = "62B002E0000000FFB400330B0000000000000000";
parseRowMergedDebugObd2Kia();
params.batModuleTempC[0] = 28;
params.batModuleTempC[1] = 29;
params.batModuleTempC[2] = 28;
params.batModuleTempC[3] = 30;
// This is more accurate than min/max from BMS. It's required to detect kona/eniro cold gates (min 15C is needed > 43kW charging, min 25C is needed > 58kW charging)
params.batMinC = params.batMaxC = params.batModuleTempC[0];
for (uint16_t i = 1; i < params.batModuleTempCount; i++) {
if (params.batModuleTempC[i] < params.batMinC)
params.batMinC = params.batModuleTempC[i];
if (params.batModuleTempC[i] > params.batMaxC)
params.batMaxC = params.batModuleTempC[i];
}
params.batTempC = params.batMinC;
//
params.soc10ced[10] = 2200;
params.soc10cec[10] = 2500;
params.soc10odo[10] = 13000;
params.soc10time[10] = 13000;
params.soc10ced[9] = params.soc10ced[10] + 6.4;
params.soc10cec[9] = params.soc10cec[10] + 0;
params.soc10odo[9] = params.soc10odo[10] + 30;
params.soc10time[9] = params.soc10time[10] + 900;
params.soc10ced[8] = params.soc10ced[9] + 6.8;
params.soc10cec[8] = params.soc10cec[9] + 0;
params.soc10odo[8] = params.soc10odo[9] + 30;
params.soc10time[8] = params.soc10time[9] + 900;
params.soc10ced[7] = params.soc10ced[8] + 7.2;
params.soc10cec[7] = params.soc10cec[8] + 0.6;
params.soc10odo[7] = params.soc10odo[8] + 30;
params.soc10time[7] = params.soc10time[8] + 900;
params.soc10ced[6] = params.soc10ced[7] + 6.7;
params.soc10cec[6] = params.soc10cec[7] + 0;
params.soc10odo[6] = params.soc10odo[7] + 30;
params.soc10time[6] = params.soc10time[7] + 900;
params.soc10ced[5] = params.soc10ced[6] + 6.7;
params.soc10cec[5] = params.soc10cec[6] + 0;
params.soc10odo[5] = params.soc10odo[6] + 30;
params.soc10time[5] = params.soc10time[6] + 900;
params.soc10ced[4] = params.soc10ced[5] + 6.4;
params.soc10cec[4] = params.soc10cec[5] + 0.3;
params.soc10odo[4] = params.soc10odo[5] + 30;
params.soc10time[4] = params.soc10time[5] + 900;
params.soc10ced[3] = params.soc10ced[4] + 6.4;
params.soc10cec[3] = params.soc10cec[4] + 0;
params.soc10odo[3] = params.soc10odo[4] + 30;
params.soc10time[3] = params.soc10time[4] + 900;
params.soc10ced[2] = params.soc10ced[3] + 5.4;
params.soc10cec[2] = params.soc10cec[3] + 0.1;
params.soc10odo[2] = params.soc10odo[3] + 30;
params.soc10time[2] = params.soc10time[3] + 900;
params.soc10ced[1] = params.soc10ced[2] + 6.2;
params.soc10cec[1] = params.soc10cec[2] + 0.1;
params.soc10odo[1] = params.soc10odo[2] + 30;
params.soc10time[1] = params.soc10time[2] + 900;
params.soc10ced[0] = params.soc10ced[1] + 2.9;
params.soc10cec[0] = params.soc10cec[1] + 0.5;
params.soc10odo[0] = params.soc10odo[1] + 15;
params.soc10time[0] = params.soc10time[1] + 900;
return true;
}

View File

@@ -1,376 +0,0 @@
#define commandQueueCountHyundaiIoniq 25
#define commandQueueLoopFromHyundaiIoniq 8
String commandQueueHyundaiIoniq[commandQueueCountHyundaiIoniq] = {
"AT Z", // Reset all
"AT I", // Print the version ID
"AT E0", // Echo off
"AT L0", // Linefeeds off
"AT S0", // Printing of spaces on
"AT SP 6", // Select protocol to ISO 15765-4 CAN (11 bit ID, 500 kbit/s)
//"AT AL", // Allow Long (>7 byte) messages
//"AT AR", // Automatically receive
//"AT H1", // Headers on (debug only)
//"AT D1", // Display of the DLC on
//"AT CAF0", // Automatic formatting off
"AT DP",
"AT ST16",
// Loop from (HYUNDAI IONIQ)
// BMS
"ATSH7E4",
"2101", // power kw, ...
"2102", // cell voltages, screen 3 only
"2103", // cell voltages, screen 3 only
"2104", // cell voltages, screen 3 only
"2105", // soh, soc, ..
"2106", // cooling water temp
// VMCU
"ATSH7E2",
"2101", // speed, ...
"2102", // aux, ...
//"ATSH7Df",
//"2106",
//"220106",
// Aircondition
// IONIQ OK
"ATSH7B3",
"220100", // in/out temp
"220102", // coolant temp1, 2
// BCM / TPMS
// IONIQ OK
"ATSH7A0",
"22c00b", // tire pressure/temp
// CLUSTER MODULE
// IONIQ OK
"ATSH7C6",
"22B002", // odo
};
/**
Init command queue
*/
bool activateCommandQueueForHyundaiIoniq() {
// 28kWh version
params.batteryTotalAvailableKWh = 28;
params.batModuleTempCount = 12;
// Empty and fill command queue
for (int i = 0; i < 300; i++) {
commandQueue[i] = "";
}
for (int i = 0; i < commandQueueCountHyundaiIoniq; i++) {
commandQueue[i] = commandQueueHyundaiIoniq[i];
}
commandQueueLoopFrom = commandQueueLoopFromHyundaiIoniq;
commandQueueCount = commandQueueCountHyundaiIoniq;
return true;
}
/**
Parse merged row
*/
bool parseRowMergedHyundaiIoniq() {
// VMCU 7E2
if (currentAtshRequest.equals("ATSH7E2")) {
if (commandRequest.equals("2101")) {
params.speedKmh = hexToDec(responseRowMerged.substring(32, 36).c_str(), 2, false) * 0.0155; // / 100.0 *1.609 = real to gps is 1.750
if (params.speedKmh < -99 || params.speedKmh > 200)
params.speedKmh = 0;
}
if (commandRequest.equals("2102")) {
params.auxPerc = hexToDec(responseRowMerged.substring(50, 52).c_str(), 1, false);
params.auxCurrentAmp = - hexToDec(responseRowMerged.substring(46, 50).c_str(), 2, true) / 1000.0;
}
}
// Cluster module 7c6
if (currentAtshRequest.equals("ATSH7C6")) {
if (commandRequest.equals("22B002")) {
params.odoKm = float(strtol(responseRowMerged.substring(18, 24).c_str(), 0, 16));
}
}
// Aircon 7b3
if (currentAtshRequest.equals("ATSH7B3")) {
if (commandRequest.equals("220100")) {
params.indoorTemperature = (hexToDec(responseRowMerged.substring(16, 18).c_str(), 1, false) / 2) - 40;
params.outdoorTemperature = (hexToDec(responseRowMerged.substring(18, 20).c_str(), 1, false) / 2) - 40;
}
if (commandRequest.equals("220102") && responseRowMerged.substring(12, 14) == "00") {
params.coolantTemp1C = (hexToDec(responseRowMerged.substring(14, 16).c_str(), 1, false) / 2) - 40;
params.coolantTemp2C = (hexToDec(responseRowMerged.substring(16, 18).c_str(), 1, false) / 2) - 40;
}
}
// BMS 7e4
if (currentAtshRequest.equals("ATSH7E4")) {
if (commandRequest.equals("2101")) {
params.cumulativeEnergyChargedKWh = float(strtol(responseRowMerged.substring(80, 88).c_str(), 0, 16)) / 10.0;
if (params.cumulativeEnergyChargedKWhStart == -1)
params.cumulativeEnergyChargedKWhStart = params.cumulativeEnergyChargedKWh;
params.cumulativeEnergyDischargedKWh = float(strtol(responseRowMerged.substring(88, 96).c_str(), 0, 16)) / 10.0;
if (params.cumulativeEnergyDischargedKWhStart == -1)
params.cumulativeEnergyDischargedKWhStart = params.cumulativeEnergyDischargedKWh;
params.availableChargePower = float(strtol(responseRowMerged.substring(16, 20).c_str(), 0, 16)) / 100.0;
params.availableDischargePower = float(strtol(responseRowMerged.substring(20, 24).c_str(), 0, 16)) / 100.0;
params.isolationResistanceKOhm = hexToDec(responseRowMerged.substring(118, 122).c_str(), 2, true);
params.batFanStatus = hexToDec(responseRowMerged.substring(58, 60).c_str(), 2, true);
params.batFanFeedbackHz = hexToDec(responseRowMerged.substring(60, 62).c_str(), 2, true);
params.auxVoltage = hexToDec(responseRowMerged.substring(62, 64).c_str(), 2, true) / 10.0;
params.batPowerAmp = - hexToDec(responseRowMerged.substring(24, 28).c_str(), 2, true) / 10.0;
params.batVoltage = hexToDec(responseRowMerged.substring(28, 32).c_str(), 2, false) / 10.0;
params.batPowerKw = (params.batPowerAmp * params.batVoltage) / 1000.0;
if (params.batPowerKw < 1) // Reset charging start time
params.chargingStartTime = params.currentTime;
params.batPowerKwh100 = params.batPowerKw / params.speedKmh * 100;
params.batCellMaxV = hexToDec(responseRowMerged.substring(50, 52).c_str(), 1, false) / 50.0;
params.batCellMinV = hexToDec(responseRowMerged.substring(54, 56).c_str(), 1, false) / 50.0;
params.batModuleTempC[0] = hexToDec(responseRowMerged.substring(36, 38).c_str(), 1, true);
params.batModuleTempC[1] = hexToDec(responseRowMerged.substring(38, 40).c_str(), 1, true);
params.batModuleTempC[2] = hexToDec(responseRowMerged.substring(40, 42).c_str(), 1, true);
params.batModuleTempC[3] = hexToDec(responseRowMerged.substring(42, 44).c_str(), 1, true);
params.batModuleTempC[4] = hexToDec(responseRowMerged.substring(44, 46).c_str(), 1, true);
//params.batTempC = hexToDec(responseRowMerged.substring(34, 36).c_str(), 1, true);
//params.batMaxC = hexToDec(responseRowMerged.substring(32, 34).c_str(), 1, true);
//params.batMinC = hexToDec(responseRowMerged.substring(34, 36).c_str(), 1, true);
// This is more accurate than min/max from BMS. It's required to detect kona/eniro cold gates (min 15C is needed > 43kW charging, min 25C is needed > 58kW charging)
params.batInletC = hexToDec(responseRowMerged.substring(48, 50).c_str(), 1, true);
if (params.speedKmh < 10 && params.batPowerKw >= 1 && params.socPerc > 0 && params.socPerc <= 100) {
if ( params.chargingGraphMinKw[int(params.socPerc)] == -100 || params.batPowerKw < params.chargingGraphMinKw[int(params.socPerc)])
params.chargingGraphMinKw[int(params.socPerc)] = params.batPowerKw;
if ( params.chargingGraphMaxKw[int(params.socPerc)] == -100 || params.batPowerKw > params.chargingGraphMaxKw[int(params.socPerc)])
params.chargingGraphMaxKw[int(params.socPerc)] = params.batPowerKw;
params.chargingGraphBatMinTempC[int(params.socPerc)] = params.batMinC;
params.chargingGraphBatMaxTempC[int(params.socPerc)] = params.batMaxC;
params.chargingGraphHeaterTempC[int(params.socPerc)] = params.batHeaterC;
}
}
// BMS 7e4
if (commandRequest.equals("2102") && responseRowMerged.substring(10, 12) == "FF") {
for (int i = 0; i < 32; i++) {
params.cellVoltage[i] = hexToDec(responseRowMerged.substring(12 + (i * 2), 12 + (i * 2) + 2).c_str(), 1, false) / 50;
}
}
// BMS 7e4
if (commandRequest.equals("2103")) {
for (int i = 0; i < 32; i++) {
params.cellVoltage[32 + i] = hexToDec(responseRowMerged.substring(12 + (i * 2), 12 + (i * 2) + 2).c_str(), 1, false) / 50;
}
}
// BMS 7e4
if (commandRequest.equals("2104")) {
for (int i = 0; i < 32; i++) {
params.cellVoltage[64 + i] = hexToDec(responseRowMerged.substring(12 + (i * 2), 12 + (i * 2) + 2).c_str(), 1, false) / 50;
}
}
// BMS 7e4
if (commandRequest.equals("2105")) {
params.socPercPrevious = params.socPerc;
params.sohPerc = hexToDec(responseRowMerged.substring(54, 58).c_str(), 2, false) / 10.0;
params.socPerc = hexToDec(responseRowMerged.substring(66, 68).c_str(), 1, false) / 2.0;
// Remaining battery modules (tempC)
params.batModuleTempC[5] = hexToDec(responseRowMerged.substring(22, 24).c_str(), 1, true);
params.batModuleTempC[6] = hexToDec(responseRowMerged.substring(24, 26).c_str(), 1, true);
params.batModuleTempC[7] = hexToDec(responseRowMerged.substring(26, 28).c_str(), 1, true);
params.batModuleTempC[8] = hexToDec(responseRowMerged.substring(28, 30).c_str(), 1, true);
params.batModuleTempC[9] = hexToDec(responseRowMerged.substring(30, 32).c_str(), 1, true);
params.batModuleTempC[10] = hexToDec(responseRowMerged.substring(32, 34).c_str(), 1, true);
params.batModuleTempC[11] = hexToDec(responseRowMerged.substring(34, 36).c_str(), 1, true);
params.batMinC = params.batMaxC = params.batModuleTempC[0];
for (uint16_t i = 1; i < params.batModuleTempCount; i++) {
if (params.batModuleTempC[i] < params.batMinC)
params.batMinC = params.batModuleTempC[i];
if (params.batModuleTempC[i] > params.batMaxC)
params.batMaxC = params.batModuleTempC[i];
}
params.batTempC = params.batMinC;
// Soc10ced table, record x0% CEC/CED table (ex. 90%->89%, 80%->79%)
if (params.socPercPrevious - params.socPerc > 0) {
byte index = (int(params.socPerc) == 4) ? 0 : (int)(params.socPerc / 10) + 1;
if ((int(params.socPerc) % 10 == 9 || int(params.socPerc) == 4) && params.soc10ced[index] == -1) {
params.soc10ced[index] = params.cumulativeEnergyDischargedKWh;
params.soc10cec[index] = params.cumulativeEnergyChargedKWh;
params.soc10odo[index] = params.odoKm;
params.soc10time[index] = params.currentTime;
}
}
params.batHeaterC = hexToDec(responseRowMerged.substring(50, 52).c_str(), 1, true);
//
for (int i = 30; i < 32; i++) { // ai/aj position
params.cellVoltage[96 - 30 + i] = -1;
}
}
// BMS 7e4
// IONIQ FAILED
if (commandRequest.equals("2106")) {
params.coolingWaterTempC = hexToDec(responseRowMerged.substring(14, 16).c_str(), 1, false);
}
}
// TPMS 7a0
if (currentAtshRequest.equals("ATSH7A0")) {
if (commandRequest.equals("22c00b")) {
params.tireFrontLeftPressureBar = hexToDec(responseRowMerged.substring(14, 16).c_str(), 2, false) / 72.51886900361; // === OK Valid *0.2 / 14.503773800722
params.tireFrontRightPressureBar = hexToDec(responseRowMerged.substring(22, 24).c_str(), 2, false) / 72.51886900361; // === OK Valid *0.2 / 14.503773800722
params.tireRearRightPressureBar = hexToDec(responseRowMerged.substring(30, 32).c_str(), 2, false) / 72.51886900361; // === OK Valid *0.2 / 14.503773800722
params.tireRearLeftPressureBar = hexToDec(responseRowMerged.substring(38, 40).c_str(), 2, false) / 72.51886900361; // === OK Valid *0.2 / 14.503773800722
params.tireFrontLeftTempC = hexToDec(responseRowMerged.substring(16, 18).c_str(), 2, false) - 50; // === OK Valid
params.tireFrontRightTempC = hexToDec(responseRowMerged.substring(24, 26).c_str(), 2, false) - 50; // === OK Valid
params.tireRearRightTempC = hexToDec(responseRowMerged.substring(32, 34).c_str(), 2, false) - 50; // === OK Valid
params.tireRearLeftTempC = hexToDec(responseRowMerged.substring(40, 42).c_str(), 2, false) - 50; // === OK Valid
}
}
return true;
}
/**
Test data
*/
bool testDataHyundaiIoniq() {
// VMCU ATSH7E2
currentAtshRequest = "ATSH7E2";
// 2101
commandRequest = "2101";
responseRowMerged = "6101FFE0000009211222062F03000000001D7734";
parseRowMergedHyundaiIoniq();
// 2102
commandRequest = "2102";
responseRowMerged = "6102FF80000001010000009315B2888D390B08618B683900000000";
parseRowMergedHyundaiIoniq();
// "ATSH7DF",
currentAtshRequest = "ATSH7DF";
// AIRCON / ACU ATSH7B3
currentAtshRequest = "ATSH7B3";
// 220100
commandRequest = "220100";
responseRowMerged = "6201007E5007C8FF8A876A011010FFFF10FF10FFFFFFFFFFFFFFFFFF2EEF767D00FFFF00FFFF000000";
parseRowMergedHyundaiIoniq();
// 220102
commandRequest = "220102";
responseRowMerged = "620102FF800000A3950000000000002600000000";
parseRowMergedHyundaiIoniq();
// BMS ATSH7E4
currentAtshRequest = "ATSH7E4";
// 220101
commandRequest = "2101";
responseRowMerged = "6101FFFFFFFF5026482648A3FFC30D9E181717171718170019B50FB501000090000142230001425F0000771B00007486007815D809015C0000000003E800";
parseRowMergedHyundaiIoniq();
// 220102
commandRequest = "2102";
responseRowMerged = "6102FFFFFFFFB5B5B5B5B5B5B5B5B5B5B5B5B5B5B5B5B5B5B5B5B5B5B5B5B5B5B5B5B5B5B5B5000000";
parseRowMergedHyundaiIoniq();
// 220103
commandRequest = "2103";
responseRowMerged = "6103FFFFFFFFB5B5B5B5B5B5B5B5B5B5B5B5B5B5B5B5B5B5B5B5B5B5B5B5B5B5B5B5B5B5B5B5000000";
parseRowMergedHyundaiIoniq();
// 220104
commandRequest = "2104";
responseRowMerged = "6104FFFFFFFFB5B5B5B5B5B5B5B5B5B5B5B5B5B5B5B5B5B5B5B5B5B5B5B5B5B5B5B5B5B5B5B5000000";
parseRowMergedHyundaiIoniq();
// 220105
commandRequest = "2105";
responseRowMerged = "6105FFFFFFFF00000000001717171817171726482648000150181703E81A03E801520029000000000000000000000000";
parseRowMergedHyundaiIoniq();
// 220106
commandRequest = "2106";
responseRowMerged = "7F2112"; // n/a on ioniq
parseRowMergedHyundaiIoniq();
// BCM / TPMS ATSH7A0
currentAtshRequest = "ATSH7A0";
// 22c00b
commandRequest = "22c00b";
responseRowMerged = "62C00BFFFF0000B9510100B9510100B84F0100B54F0100AAAAAAAA";
parseRowMergedHyundaiIoniq();
// ATSH7C6
currentAtshRequest = "ATSH7C6";
// 22b002
commandRequest = "22b002";
responseRowMerged = "62B002E000000000AD003D2D0000000000000000";
parseRowMergedHyundaiIoniq();
/* params.batModule01TempC = 28;
params.batModule02TempC = 29;
params.batModule03TempC = 28;
params.batModule04TempC = 30;
//params.batTempC = hexToDec(responseRowMerged.substring(36, 38).c_str(), 1, true);
//params.batMaxC = hexToDec(responseRowMerged.substring(34, 36).c_str(), 1, true);
//params.batMinC = hexToDec(responseRowMerged.substring(36, 38).c_str(), 1, true);
// This is more accurate than min/max from BMS. It's required to detect kona/eniro cold gates (min 15C is needed > 43kW charging, min 25C is needed > 58kW charging)
params.batMinC = params.batMaxC = params.batModule01TempC;
params.batMinC = (params.batModule02TempC < params.batMinC) ? params.batModule02TempC : params.batMinC ;
params.batMinC = (params.batModule03TempC < params.batMinC) ? params.batModule03TempC : params.batMinC ;
params.batMinC = (params.batModule04TempC < params.batMinC) ? params.batModule04TempC : params.batMinC ;
params.batMaxC = (params.batModule02TempC > params.batMaxC) ? params.batModule02TempC : params.batMaxC ;
params.batMaxC = (params.batModule03TempC > params.batMaxC) ? params.batModule03TempC : params.batMaxC ;
params.batMaxC = (params.batModule04TempC > params.batMaxC) ? params.batModule04TempC : params.batMaxC ;
params.batTempC = params.batMinC;
//
params.soc10ced[10] = 2200;
params.soc10cec[10] = 2500;
params.soc10odo[10] = 13000;
params.soc10time[10] = 13000;
params.soc10ced[9] = params.soc10ced[10] + 6.4;
params.soc10cec[9] = params.soc10cec[10] + 0;
params.soc10odo[9] = params.soc10odo[10] + 30;
params.soc10time[9] = params.soc10time[10] + 900;
params.soc10ced[8] = params.soc10ced[9] + 6.8;
params.soc10cec[8] = params.soc10cec[9] + 0;
params.soc10odo[8] = params.soc10odo[9] + 30;
params.soc10time[8] = params.soc10time[9] + 900;
params.soc10ced[7] = params.soc10ced[8] + 7.2;
params.soc10cec[7] = params.soc10cec[8] + 0.6;
params.soc10odo[7] = params.soc10odo[8] + 30;
params.soc10time[7] = params.soc10time[8] + 900;
params.soc10ced[6] = params.soc10ced[7] + 6.7;
params.soc10cec[6] = params.soc10cec[7] + 0;
params.soc10odo[6] = params.soc10odo[7] + 30;
params.soc10time[6] = params.soc10time[7] + 900;
params.soc10ced[5] = params.soc10ced[6] + 6.7;
params.soc10cec[5] = params.soc10cec[6] + 0;
params.soc10odo[5] = params.soc10odo[6] + 30;
params.soc10time[5] = params.soc10time[6] + 900;
params.soc10ced[4] = params.soc10ced[5] + 6.4;
params.soc10cec[4] = params.soc10cec[5] + 0.3;
params.soc10odo[4] = params.soc10odo[5] + 30;
params.soc10time[4] = params.soc10time[5] + 900;
params.soc10ced[3] = params.soc10ced[4] + 6.4;
params.soc10cec[3] = params.soc10cec[4] + 0;
params.soc10odo[3] = params.soc10odo[4] + 30;
params.soc10time[3] = params.soc10time[4] + 900;
params.soc10ced[2] = params.soc10ced[3] + 5.4;
params.soc10cec[2] = params.soc10cec[3] + 0.1;
params.soc10odo[2] = params.soc10odo[3] + 30;
params.soc10time[2] = params.soc10time[3] + 900;
params.soc10ced[1] = params.soc10ced[2] + 6.2;
params.soc10cec[1] = params.soc10cec[2] + 0.1;
params.soc10odo[1] = params.soc10odo[2] + 30;
params.soc10time[1] = params.soc10time[2] + 900;
params.soc10ced[0] = params.soc10ced[1] + 2.9;
params.soc10cec[0] = params.soc10cec[1] + 0.5;
params.soc10odo[0] = params.soc10odo[1] + 15;
params.soc10time[0] = params.soc10time[1] + 900;
*/
return true;
}

View File

@@ -1,430 +0,0 @@
#define commandQueueCountKiaENiro 30
#define commandQueueLoopFromKiaENiro 10
String commandQueueKiaENiro[commandQueueCountKiaENiro] = {
"AT Z", // Reset all
"AT I", // Print the version ID
"AT S0", // Printing of spaces on
"AT E0", // Echo off
"AT L0", // Linefeeds off
"AT SP 6", // Select protocol to ISO 15765-4 CAN (11 bit ID, 500 kbit/s)
//"AT AL", // Allow Long (>7 byte) messages
//"AT AR", // Automatically receive
//"AT H1", // Headers on (debug only)
//"AT D1", // Display of the DLC on
//"AT CAF0", // Automatic formatting off
////"AT AT0", // disabled adaptive timing
"AT DP",
"AT ST16", // reduced timeout to 1, orig.16
// Loop from (KIA ENIRO)
// ABS / ESP + AHB
"ATSH7D1",
"22C101", // brake, park/drive mode
// IGPM
"ATSH770",
"22BC03", // low beam
"22BC06", // brake light
// VMCU
"ATSH7E2",
"2101", // speed, ...
"2102", // aux, ...
// BMS
"ATSH7E4",
"220101", // power kw, ...
"220102", // cell voltages
"220103", // cell voltages
"220104", // cell voltages
"220105", // soh, soc, ..
"220106", // cooling water temp
// Aircondition
"ATSH7B3",
"220100", // in/out temp
"220102", // coolant temp1, 2
// BCM / TPMS
"ATSH7A0",
"22c00b", // tire pressure/temp
// CLUSTER MODULE
"ATSH7C6",
"22B002", // odo
};
/**
Init command queue
*/
bool activateCommandQueueForKiaENiro() {
// 39 or 64 kWh model?
params.batModuleTempCount = 4;
params.batteryTotalAvailableKWh = 64;
// =(I18*0,615)*(1+(I18*0,0008)) soc to kwh niro ev 2020
if (settings.carType == CAR_KIA_ENIRO_2020_39 || settings.carType == CAR_HYUNDAI_KONA_2020_39) {
params.batteryTotalAvailableKWh = 39.2;
}
// Empty and fill command queue
for (int i = 0; i < 300; i++) {
commandQueue[i] = "";
}
for (int i = 0; i < commandQueueCountKiaENiro; i++) {
commandQueue[i] = commandQueueKiaENiro[i];
}
commandQueueLoopFrom = commandQueueLoopFromKiaENiro;
commandQueueCount = commandQueueCountKiaENiro;
return true;
}
/**
Parse merged row
*/
bool parseRowMergedKiaENiro() {
bool tempByte;
// ABS / ESP + AHB 7D1
if (currentAtshRequest.equals("ATSH7D1")) {
if (commandRequest.equals("22C101")) {
uint8_t driveMode = hexToDec(responseRowMerged.substring(22, 24).c_str(), 1, false);
params.forwardDriveMode = (driveMode == 4);
params.reverseDriveMode = (driveMode == 2);
params.parkModeOrNeutral = (driveMode == 1);
}
}
// IGPM
if (currentAtshRequest.equals("ATSH770")) {
if (commandRequest.equals("22BC03")) {
tempByte = hexToDec(responseRowMerged.substring(16, 18).c_str(), 1, false);
params.ignitionOnPrevious = params.ignitionOn;
params.ignitionOn = (bitRead(tempByte, 5) == 1);
if (params.ignitionOnPrevious && !params.ignitionOn)
params.automatickShutdownTimer = params.currentTime;
params.lightInfo = hexToDec(responseRowMerged.substring(18, 20).c_str(), 1, false);
params.headLights = (bitRead(params.lightInfo, 5) == 1);
params.dayLights = (bitRead(params.lightInfo, 3) == 1);
}
if (commandRequest.equals("22BC06")) {
params.brakeLightInfo = hexToDec(responseRowMerged.substring(14, 16).c_str(), 1, false);
params.brakeLights = (bitRead(params.brakeLightInfo, 5) == 1);
}
}
// VMCU 7E2
if (currentAtshRequest.equals("ATSH7E2")) {
if (commandRequest.equals("2101")) {
params.speedKmh = hexToDec(responseRowMerged.substring(32, 36).c_str(), 2, false) * 0.0155; // / 100.0 *1.609 = real to gps is 1.750
if (params.speedKmh < -99 || params.speedKmh > 200)
params.speedKmh = 0;
}
if (commandRequest.equals("2102")) {
params.auxPerc = hexToDec(responseRowMerged.substring(50, 52).c_str(), 1, false);
params.auxCurrentAmp = - hexToDec(responseRowMerged.substring(46, 50).c_str(), 2, true) / 1000.0;
}
}
// Cluster module 7c6
if (currentAtshRequest.equals("ATSH7C6")) {
if (commandRequest.equals("22B002")) {
params.odoKm = float(strtol(responseRowMerged.substring(18, 24).c_str(), 0, 16));
}
}
// Aircon 7b3
if (currentAtshRequest.equals("ATSH7B3")) {
if (commandRequest.equals("220100")) {
params.indoorTemperature = (hexToDec(responseRowMerged.substring(16, 18).c_str(), 1, false) / 2) - 40;
params.outdoorTemperature = (hexToDec(responseRowMerged.substring(18, 20).c_str(), 1, false) / 2) - 40;
}
if (commandRequest.equals("220102") && responseRowMerged.substring(12, 14) == "00") {
params.coolantTemp1C = (hexToDec(responseRowMerged.substring(14, 16).c_str(), 1, false) / 2) - 40;
params.coolantTemp2C = (hexToDec(responseRowMerged.substring(16, 18).c_str(), 1, false) / 2) - 40;
}
}
// BMS 7e4
if (currentAtshRequest.equals("ATSH7E4")) {
if (commandRequest.equals("220101")) {
params.cumulativeEnergyChargedKWh = float(strtol(responseRowMerged.substring(82, 90).c_str(), 0, 16)) / 10.0;
if (params.cumulativeEnergyChargedKWhStart == -1)
params.cumulativeEnergyChargedKWhStart = params.cumulativeEnergyChargedKWh;
params.cumulativeEnergyDischargedKWh = float(strtol(responseRowMerged.substring(90, 98).c_str(), 0, 16)) / 10.0;
if (params.cumulativeEnergyDischargedKWhStart == -1)
params.cumulativeEnergyDischargedKWhStart = params.cumulativeEnergyDischargedKWh;
params.availableChargePower = float(strtol(responseRowMerged.substring(16, 20).c_str(), 0, 16)) / 100.0;
params.availableDischargePower = float(strtol(responseRowMerged.substring(20, 24).c_str(), 0, 16)) / 100.0;
//params.isolationResistanceKOhm = hexToDec(responseRowMerged.substring(118, 122).c_str(), 2, true);
params.batFanStatus = hexToDec(responseRowMerged.substring(60, 62).c_str(), 2, true);
params.batFanFeedbackHz = hexToDec(responseRowMerged.substring(62, 64).c_str(), 2, true);
params.auxVoltage = hexToDec(responseRowMerged.substring(64, 66).c_str(), 2, true) / 10.0;
params.batPowerAmp = - hexToDec(responseRowMerged.substring(26, 30).c_str(), 2, true) / 10.0;
params.batVoltage = hexToDec(responseRowMerged.substring(30, 34).c_str(), 2, false) / 10.0;
params.batPowerKw = (params.batPowerAmp * params.batVoltage) / 1000.0;
if (params.batPowerKw < 0) // Reset charging start time
params.chargingStartTime = params.currentTime;
params.batPowerKwh100 = params.batPowerKw / params.speedKmh * 100;
params.batCellMaxV = hexToDec(responseRowMerged.substring(52, 54).c_str(), 1, false) / 50.0;
params.batCellMinV = hexToDec(responseRowMerged.substring(56, 58).c_str(), 1, false) / 50.0;
params.batModuleTempC[0] = hexToDec(responseRowMerged.substring(38, 40).c_str(), 1, true);
params.batModuleTempC[1] = hexToDec(responseRowMerged.substring(40, 42).c_str(), 1, true);
params.batModuleTempC[2] = hexToDec(responseRowMerged.substring(42, 44).c_str(), 1, true);
params.batModuleTempC[3] = hexToDec(responseRowMerged.substring(44, 46).c_str(), 1, true);
params.motorRpm = hexToDec(responseRowMerged.substring(112, 116).c_str(), 2, false);
//params.batTempC = hexToDec(responseRowMerged.substring(36, 38).c_str(), 1, true);
//params.batMaxC = hexToDec(responseRowMerged.substring(34, 36).c_str(), 1, true);
//params.batMinC = hexToDec(responseRowMerged.substring(36, 38).c_str(), 1, true);
// This is more accurate than min/max from BMS. It's required to detect kona/eniro cold gates (min 15C is needed > 43kW charging, min 25C is needed > 58kW charging)
params.batMinC = params.batMaxC = params.batModuleTempC[0];
for (uint16_t i = 1; i < params.batModuleTempCount; i++) {
if (params.batModuleTempC[i] < params.batMinC)
params.batMinC = params.batModuleTempC[i];
if (params.batModuleTempC[i] > params.batMaxC)
params.batMaxC = params.batModuleTempC[i];
}
params.batTempC = params.batMinC;
params.batInletC = hexToDec(responseRowMerged.substring(50, 52).c_str(), 1, true);
if (params.speedKmh < 10 && params.batPowerKw >= 1 && params.socPerc > 0 && params.socPerc <= 100) {
if ( params.chargingGraphMinKw[int(params.socPerc)] < 0 || params.batPowerKw < params.chargingGraphMinKw[int(params.socPerc)])
params.chargingGraphMinKw[int(params.socPerc)] = params.batPowerKw;
if ( params.chargingGraphMaxKw[int(params.socPerc)] < 0 || params.batPowerKw > params.chargingGraphMaxKw[int(params.socPerc)])
params.chargingGraphMaxKw[int(params.socPerc)] = params.batPowerKw;
params.chargingGraphBatMinTempC[int(params.socPerc)] = params.batMinC;
params.chargingGraphBatMaxTempC[int(params.socPerc)] = params.batMaxC;
params.chargingGraphHeaterTempC[int(params.socPerc)] = params.batHeaterC;
params.chargingGraphWaterCoolantTempC[int(params.socPerc)] = params.coolingWaterTempC;
}
}
// BMS 7e4
if (commandRequest.equals("220102") && responseRowMerged.substring(12, 14) == "FF") {
for (int i = 0; i < 32; i++) {
params.cellVoltage[i] = hexToDec(responseRowMerged.substring(14 + (i * 2), 14 + (i * 2) + 2).c_str(), 1, false) / 50;
}
}
// BMS 7e4
if (commandRequest.equals("220103")) {
for (int i = 0; i < 32; i++) {
params.cellVoltage[32 + i] = hexToDec(responseRowMerged.substring(14 + (i * 2), 14 + (i * 2) + 2).c_str(), 1, false) / 50;
}
}
// BMS 7e4
if (commandRequest.equals("220104")) {
for (int i = 0; i < 32; i++) {
params.cellVoltage[64 + i] = hexToDec(responseRowMerged.substring(14 + (i * 2), 14 + (i * 2) + 2).c_str(), 1, false) / 50;
}
}
// BMS 7e4
if (commandRequest.equals("220105")) {
params.socPercPrevious = params.socPerc;
params.sohPerc = hexToDec(responseRowMerged.substring(56, 60).c_str(), 2, false) / 10.0;
params.socPerc = hexToDec(responseRowMerged.substring(68, 70).c_str(), 1, false) / 2.0;
// Soc10ced table, record x0% CEC/CED table (ex. 90%->89%, 80%->79%)
if (params.socPercPrevious - params.socPerc > 0) {
byte index = (int(params.socPerc) == 4) ? 0 : (int)(params.socPerc / 10) + 1;
if ((int(params.socPerc) % 10 == 9 || int(params.socPerc) == 4) && params.soc10ced[index] == -1) {
params.soc10ced[index] = params.cumulativeEnergyDischargedKWh;
params.soc10cec[index] = params.cumulativeEnergyChargedKWh;
params.soc10odo[index] = params.odoKm;
params.soc10time[index] = params.currentTime;
}
}
params.bmsUnknownTempA = hexToDec(responseRowMerged.substring(30, 32).c_str(), 1, true);
params.batHeaterC = hexToDec(responseRowMerged.substring(52, 54).c_str(), 1, true);
params.bmsUnknownTempB = hexToDec(responseRowMerged.substring(82, 84).c_str(), 1, true);
//
for (int i = 30; i < 32; i++) { // ai/aj position
params.cellVoltage[96 - 30 + i] = hexToDec(responseRowMerged.substring(14 + (i * 2), 14 + (i * 2) + 2).c_str(), 1, false) / 50;
}
}
// BMS 7e4
if (commandRequest.equals("220106")) {
params.coolingWaterTempC = hexToDec(responseRowMerged.substring(14, 16).c_str(), 1, false);
params.bmsUnknownTempC = hexToDec(responseRowMerged.substring(18, 20).c_str(), 1, true);
params.bmsUnknownTempD = hexToDec(responseRowMerged.substring(46, 48).c_str(), 1, true);
}
}
// TPMS 7a0
if (currentAtshRequest.equals("ATSH7A0")) {
if (commandRequest.equals("22c00b")) {
params.tireFrontLeftPressureBar = hexToDec(responseRowMerged.substring(14, 16).c_str(), 2, false) / 72.51886900361; // === OK Valid *0.2 / 14.503773800722
params.tireFrontRightPressureBar = hexToDec(responseRowMerged.substring(22, 24).c_str(), 2, false) / 72.51886900361; // === OK Valid *0.2 / 14.503773800722
params.tireRearRightPressureBar = hexToDec(responseRowMerged.substring(30, 32).c_str(), 2, false) / 72.51886900361; // === OK Valid *0.2 / 14.503773800722
params.tireRearLeftPressureBar = hexToDec(responseRowMerged.substring(38, 40).c_str(), 2, false) / 72.51886900361; // === OK Valid *0.2 / 14.503773800722
params.tireFrontLeftTempC = hexToDec(responseRowMerged.substring(16, 18).c_str(), 2, false) - 50; // === OK Valid
params.tireFrontRightTempC = hexToDec(responseRowMerged.substring(24, 26).c_str(), 2, false) - 50; // === OK Valid
params.tireRearRightTempC = hexToDec(responseRowMerged.substring(32, 34).c_str(), 2, false) - 50; // === OK Valid
params.tireRearLeftTempC = hexToDec(responseRowMerged.substring(40, 42).c_str(), 2, false) - 50; // === OK Valid
}
}
return true;
}
/**
Test data
*/
bool testDataKiaENiro() {
// IGPM
currentAtshRequest = "ATSH770";
// 22BC03
commandRequest = "22BC03";
responseRowMerged = "62BC03FDEE7C730A600000AAAA";
parseRowMergedKiaENiro();
// ABS / ESP + AHB ATSH7D1
currentAtshRequest = "ATSH7D1";
// 2101
commandRequest = "22C101";
responseRowMerged = "62C1015FD7E7D0FFFF00FF04D0D400000000FF7EFF0030F5010000FFFF7F6307F207FE05FF00FF3FFFFFAAAAAAAAAAAA";
parseRowMergedKiaENiro();
// VMCU ATSH7E2
currentAtshRequest = "ATSH7E2";
// 2101
commandRequest = "2101";
responseRowMerged = "6101FFF8000009285A3B0648030000B4179D763404080805000000";
parseRowMergedKiaENiro();
// 2102
commandRequest = "2102";
responseRowMerged = "6102F8FFFC000101000000840FBF83BD33270680953033757F59291C76000001010100000007000000";
responseRowMerged = "6102F8FFFC000101000000931CC77F4C39040BE09BA7385D8158832175000001010100000007000000";
parseRowMergedKiaENiro();
// "ATSH7DF",
currentAtshRequest = "ATSH7DF";
// 2106
commandRequest = "2106";
responseRowMerged = "6106FFFF800000000000000200001B001C001C000600060006000E000000010000000000000000013D013D013E013E00";
parseRowMergedKiaENiro();
// AIRCON / ACU ATSH7B3
currentAtshRequest = "ATSH7B3";
// 220100
commandRequest = "220100";
responseRowMerged = "6201007E5027C8FF7F765D05B95AFFFF5AFF11FFFFFFFFFFFF6AFFFF2DF0757630FFFF00FFFF000000";
responseRowMerged = "6201007E5027C8FF867C58121010FFFF10FF8EFFFFFFFFFFFF10FFFF0DF0617900FFFF01FFFF000000";
parseRowMergedKiaENiro();
// BMS ATSH7E4
currentAtshRequest = "ATSH7E4";
// 220101
commandRequest = "220101";
responseRowMerged = "620101FFF7E7FF99000000000300B10EFE120F11100F12000018C438C30B00008400003864000035850000153A00001374000647010D017F0BDA0BDA03E8";
responseRowMerged = "620101FFF7E7FFB3000000000300120F9B111011101011000014CC38CB3B00009100003A510000367C000015FB000013D3000690250D018E0000000003E8";
parseRowMergedKiaENiro();
// 220102
commandRequest = "220102";
responseRowMerged = "620102FFFFFFFFCBCBCBCBCBCBCBCBCBCBCBCBCBCBCBCBCBCBCBCBCBCBCBCBCBCBCBCBCBCBCBCBAAAA";
parseRowMergedKiaENiro();
// 220103
commandRequest = "220103";
responseRowMerged = "620103FFFFFFFFCBCBCBCBCBCBCBCBCBCBCBCBCBCBCBCBCBCBCACBCACACFCCCBCBCBCBCBCBCBCBAAAA";
parseRowMergedKiaENiro();
// 220104
commandRequest = "220104";
responseRowMerged = "620104FFFFFFFFCBCBCBCBCBCBCBCBCBCBCBCBCBCBCBCBCBCBCBCBCBCBCBCBCBCBCBCBCBCBCBCBAAAA";
parseRowMergedKiaENiro();
// 220105
commandRequest = "220105";
responseRowMerged = "620105003fff9000000000000000000F8A86012B4946500101500DAC03E800000000AC0000C7C701000F00000000AAAA";
responseRowMerged = "620105003FFF90000000000000000014918E012927465000015013BB03E800000000BB0000CBCB01001300000000AAAA";
parseRowMergedKiaENiro();
// 220106
commandRequest = "220106";
responseRowMerged = "620106FFFFFFFF14001A00240000003A7C86B4B30000000928EA00";
parseRowMergedKiaENiro();
// BCM / TPMS ATSH7A0
currentAtshRequest = "ATSH7A0";
// 22c00b
commandRequest = "22c00b";
responseRowMerged = "62C00BFFFF0000B93D0100B43E0100B43D0100BB3C0100AAAAAAAA";
parseRowMergedKiaENiro();
// ATSH7C6
currentAtshRequest = "ATSH7C6";
// 22b002
commandRequest = "22b002";
responseRowMerged = "62B002E0000000FFB400330B0000000000000000";
parseRowMergedKiaENiro();
params.batModuleTempC[0] = 28;
params.batModuleTempC[1] = 29;
params.batModuleTempC[2] = 28;
params.batModuleTempC[3] = 30;
// This is more accurate than min/max from BMS. It's required to detect kona/eniro cold gates (min 15C is needed > 43kW charging, min 25C is needed > 58kW charging)
params.batMinC = params.batMaxC = params.batModuleTempC[0];
for (uint16_t i = 1; i < params.batModuleTempCount; i++) {
if (params.batModuleTempC[i] < params.batMinC)
params.batMinC = params.batModuleTempC[i];
if (params.batModuleTempC[i] > params.batMaxC)
params.batMaxC = params.batModuleTempC[i];
}
params.batTempC = params.batMinC;
//
params.soc10ced[10] = 2200;
params.soc10cec[10] = 2500;
params.soc10odo[10] = 13000;
params.soc10time[10] = 13000;
params.soc10ced[9] = params.soc10ced[10] + 6.4;
params.soc10cec[9] = params.soc10cec[10] + 0;
params.soc10odo[9] = params.soc10odo[10] + 30;
params.soc10time[9] = params.soc10time[10] + 900;
params.soc10ced[8] = params.soc10ced[9] + 6.8;
params.soc10cec[8] = params.soc10cec[9] + 0;
params.soc10odo[8] = params.soc10odo[9] + 30;
params.soc10time[8] = params.soc10time[9] + 900;
params.soc10ced[7] = params.soc10ced[8] + 7.2;
params.soc10cec[7] = params.soc10cec[8] + 0.6;
params.soc10odo[7] = params.soc10odo[8] + 30;
params.soc10time[7] = params.soc10time[8] + 900;
params.soc10ced[6] = params.soc10ced[7] + 6.7;
params.soc10cec[6] = params.soc10cec[7] + 0;
params.soc10odo[6] = params.soc10odo[7] + 30;
params.soc10time[6] = params.soc10time[7] + 900;
params.soc10ced[5] = params.soc10ced[6] + 6.7;
params.soc10cec[5] = params.soc10cec[6] + 0;
params.soc10odo[5] = params.soc10odo[6] + 30;
params.soc10time[5] = params.soc10time[6] + 900;
params.soc10ced[4] = params.soc10ced[5] + 6.4;
params.soc10cec[4] = params.soc10cec[5] + 0.3;
params.soc10odo[4] = params.soc10odo[5] + 30;
params.soc10time[4] = params.soc10time[5] + 900;
params.soc10ced[3] = params.soc10ced[4] + 6.4;
params.soc10cec[3] = params.soc10cec[4] + 0;
params.soc10odo[3] = params.soc10odo[4] + 30;
params.soc10time[3] = params.soc10time[4] + 900;
params.soc10ced[2] = params.soc10ced[3] + 5.4;
params.soc10cec[2] = params.soc10cec[3] + 0.1;
params.soc10odo[2] = params.soc10odo[3] + 30;
params.soc10time[2] = params.soc10time[3] + 900;
params.soc10ced[1] = params.soc10ced[2] + 6.2;
params.soc10cec[1] = params.soc10cec[2] + 0.1;
params.soc10odo[1] = params.soc10odo[2] + 30;
params.soc10time[1] = params.soc10time[2] + 900;
params.soc10ced[0] = params.soc10ced[1] + 2.9;
params.soc10cec[0] = params.soc10cec[1] + 0.5;
params.soc10odo[0] = params.soc10odo[1] + 15;
params.soc10time[0] = params.soc10time[1] + 900;
return true;
}

View File

@@ -1,66 +0,0 @@
#define commandQueueCountRenaultZoe 10
#define commandQueueLoopFromRenaultZoe 8
String commandQueueRenaultZoe[commandQueueCountRenaultZoe] = {
"AT Z", // Reset all
"AT I", // Print the version ID
"AT E0", // Echo off
"AT L0", // Linefeeds off
"AT S0", // Printing of spaces on
"AT SP 6", // Select protocol to ISO 15765-4 CAN (11 bit ID, 500 kbit/s)
//"AT AL", // Allow Long (>7 byte) messages
//"AT AR", // Automatically receive
//"AT H1", // Headers on (debug only)
//"AT D1", // Display of the DLC on
//"AT CAF0", // Automatic formatting off
"AT DP",
"AT ST16",
// Loop from (KIA ENIRO) // TODO
// BMS
"ATSH7E4",
"220101", // power kw, ...
};
/**
Init command queue
*/
bool activateCommandQueueForRenaultZoe() {
params.batModuleTempCount = 4;
params.batteryTotalAvailableKWh = 22;
// Empty and fill command queue
for (int i = 0; i < 300; i++) {
commandQueue[i] = "";
}
for (int i = 0; i < commandQueueCountRenaultZoe; i++) {
commandQueue[i] = commandQueueRenaultZoe[i];
}
commandQueueLoopFrom = commandQueueLoopFromRenaultZoe;
commandQueueCount = commandQueueCountRenaultZoe;
return true;
}
/**
Parse merged row
*/
bool parseRowMergedRenaultZoe() {
// TODO
return true;
}
/**
Test data
*/
bool testDataRenaultZoe() {
// TODO
return true;
}

108
config.h
View File

@@ -1,94 +1,5 @@
////////////////////////////////////////////////////////////
// SELECT HARDWARE !!!!
////////////////////////////////////////////////////////////
#define BOARD_TTGO_T4
//#define BOARD_M5STACK_CORE
//#define SIM800L_ENABLED
////////////////////////////////////////////////////////////
////////////////////////////////////////////////////////////
#define USER_SETUP_LOADED 1
#define SPI_FREQUENCY 27000000
//#define SPI_READ_FREQUENCY 20000000
#define SPI_TOUCH_FREQUENCY 2500000
////////////////////////////////////////////////////////////
// BOARD LILYGO TTGO T4 v1.3
/////////////////////////////////////////////////////////////
#ifdef BOARD_TTGO_T4
#define ILI9341_DRIVER
#define TFT_MISO 12
#define TFT_MOSI 23
#define TFT_SCLK 18
#define TFT_CS 27
#define TFT_DC 32
#define TFT_RST 5
//#define TFT_BACKLIGHT_ON HIGH
#define TFT_BL 4
#define USE_HSPI_PORT
//#define SPI_FREQUENCY 40000000 // Maximum for ILI9341
#define SPI_READ_FREQUENCY 6000000 // 6 MHz is the maximum SPI read speed for the ST7789V
#define SD_CS 13
#define SD_MOSI 15
#define SD_MISO 2
#define SD_SCLK 14
#define BUTTON_LEFT 38
#define BUTTON_MIDDLE 37
#define BUTTON_RIGHT 39
#endif // BOARD_TTGO_T4
/////////////////////////////////////////////////////////////
// BOARD M5STACK CORE IOT (M5-K001)
/////////////////////////////////////////////////////////////
#ifdef BOARD_M5STACK_CORE
#define USER_SETUP_LOADED 1
#define ILI9341_DRIVER
#define M5STACK
#define TFT_MISO 19
#define TFT_MOSI 23
#define TFT_SCLK 18
#define TFT_CS 14 // Chip select control pin
#define TFT_DC 27 // Data Command control pin
#define TFT_RST 33 // Reset pin (could connect to Arduino RESET pin)
#define TFT_BL 32 // LED back-light
#define SPI_FREQUENCY 27000000
#define SPI_READ_FREQUENCY 5000000
#define SPEAKER_PIN 25
#define INVERT_DISPLAY
#define BUTTON_LEFT 37
#define BUTTON_MIDDLE 38
#define BUTTON_RIGHT 39
#define SD_CS 4
#define SD_MOSI 23
#define SD_MISO 19
#define SD_SCLK 18
#endif // BOARD_M5STACK_CORE
////////////////////////////////////////////////////////////
// SIM800L
/////////////////////////////////////////////////////////////
#ifdef SIM800L_ENABLED
#define SIM800L_RX 16
#define SIM800L_TX 17
#define SIM800L_RST 5
#define SIM800L_TIMER 120
#endif //SIM800L_ENABLED
/////////////////////////////////////////////////////////////
/////////////////////////////////////////////////////////////
#ifndef CONFIG_H
#define CONFIG_H
// TFT COMMON
#define LOAD_GLCD // Font 1. Original Adafruit 8 pixel font needs ~1820 bytes in FLASH
@@ -139,3 +50,18 @@
#define TFT_GRAPH_COLDGATE15_24 0x0008
#define TFT_GRAPH_OPTIMAL25 0x0200
#define TFT_GRAPH_RAPIDGATE35 0x8300
////////////////////////////////////////////////////////////
// SIM800L
/////////////////////////////////////////////////////////////
#ifdef SIM800L_ENABLED
#define SIM800L_RX 16
#define SIM800L_TX 17
#define SIM800L_RST 5
#define SIM800L_TIMER 120
#endif //SIM800L_ENABLED
/////////////////////////////////////////////////////////////
//
#endif // CONFIG_H

File diff suppressed because it is too large Load Diff

11
menu.h
View File

@@ -1,3 +1,7 @@
#ifndef MENU_H
#define MENU_H
// Menu id/parent/title
typedef struct {
int16_t id;
@@ -8,7 +12,7 @@ typedef struct {
char serviceUUID[40];
} MENU_ITEM;
#define menuItemsCount 79
#define menuItemsCount 78
bool menuVisible = false;
uint16_t menuCurrent = 0;
uint8_t menuItemSelected = 0;
@@ -32,7 +36,7 @@ MENU_ITEM menuItems[menuItemsCount] = {
{103, 1, -1, "Hyundai Ioniq 2018 28kWh"},
{104, 1, -1, "Kia eNiro 2020 39kWh"},
{105, 1, -1, "Hyundai Kona 2020 39kWh"},
{106, 1, -1, "Renault Zoe 22kWh (DEV)"},
//{106, 1, -1, "Renault Zoe 22kWh (DEV)"},
{107, 1, -1, "Debug OBD2 Kia"},
{300, 3, 0, "<- parent menu"},
@@ -110,3 +114,6 @@ MENU_ITEM menuItems[menuItemsCount] = {
{10008, 9999, -1, "-"},
{10009, 9999, -1, "-"},
};
//
#endif // MENU_H