Files
Smartknob/firmware/src/display_task.cpp
Scott Bezek b47fcf7da4 Firmware updates - sensors, calibration, View support, etc (#9)
- Modify TLV493d library to expose frame counter in order to check for lockup, and implement auto-reset in tlv_sensor in case of lockup
 - Implement MT6701 SimpleFOC sensor
 - Make display optional
 - Add optional LED, strain, ALS support
 - Connect ALS to LED and display brightness
 - Hardcoded strain gauge thresholds and haptic feedback
2022-03-10 19:05:49 -08:00

203 lines
7.0 KiB
C++

#if SK_DISPLAY
#include "display_task.h"
#include "semaphore_guard.h"
#include "font/roboto_light_60.h"
DisplayTask::DisplayTask(const uint8_t task_core) : Task{"Display", 4048, 1, task_core} {
knob_state_queue_ = xQueueCreate(1, sizeof(KnobState));
assert(knob_state_queue_ != NULL);
mutex_ = xSemaphoreCreateMutex();
assert(mutex_ != NULL);
}
DisplayTask::~DisplayTask() {
vQueueDelete(knob_state_queue_);
vSemaphoreDelete(mutex_);
}
static void HSV_to_RGB(float h, float s, float v, uint8_t *r, uint8_t *g, uint8_t *b)
{
int i;
float f,p,q,t;
h = fmax(0.0, fmin(360.0, h));
s = fmax(0.0, fmin(100.0, s));
v = fmax(0.0, fmin(100.0, v));
s /= 100;
v /= 100;
if(s == 0) {
// Achromatic (grey)
*r = *g = *b = round(v*255);
return;
}
h /= 60; // sector 0 to 5
i = floor(h);
f = h - i; // factorial part of h
p = v * (1 - s);
q = v * (1 - s * f);
t = v * (1 - s * (1 - f));
switch(i) {
case 0:
*r = round(255*v);
*g = round(255*t);
*b = round(255*p);
break;
case 1:
*r = round(255*q);
*g = round(255*v);
*b = round(255*p);
break;
case 2:
*r = round(255*p);
*g = round(255*v);
*b = round(255*t);
break;
case 3:
*r = round(255*p);
*g = round(255*q);
*b = round(255*v);
break;
case 4:
*r = round(255*t);
*g = round(255*p);
*b = round(255*v);
break;
default: // case 5:
*r = round(255*v);
*g = round(255*p);
*b = round(255*q);
}
}
void DisplayTask::run() {
tft_.begin();
tft_.invertDisplay(1);
tft_.setRotation(0);
tft_.fillScreen(TFT_DARKGREEN);
ledcSetup(LEDC_CHANNEL_LCD_BACKLIGHT, 5000, 16);
ledcAttachPin(PIN_LCD_BACKLIGHT, LEDC_CHANNEL_LCD_BACKLIGHT);
ledcWrite(LEDC_CHANNEL_LCD_BACKLIGHT, UINT16_MAX);
spr_.setColorDepth(16);
if (spr_.createSprite(TFT_WIDTH, TFT_HEIGHT) == nullptr) {
Serial.println("ERROR: sprite allocation failed!");
tft_.fillScreen(TFT_RED);
} else {
Serial.println("Sprite created!");
tft_.fillScreen(TFT_PURPLE);
}
spr_.setTextColor(0xFFFF, TFT_BLACK);
KnobState state;
const int RADIUS = TFT_WIDTH / 2;
const uint16_t FILL_COLOR = spr_.color565(90, 18, 151);
const uint16_t DOT_COLOR = spr_.color565(80, 100, 200);
int32_t pointer_center_x = TFT_WIDTH / 2;
int32_t pointer_center_y = TFT_HEIGHT / 2;
int32_t pointer_length_short = 10;
int32_t pointer_length_long = TFT_WIDTH / 2 - 5;
spr_.setTextDatum(CC_DATUM);
spr_.setTextColor(TFT_WHITE);
while(1) {
if (xQueueReceive(knob_state_queue_, &state, portMAX_DELAY) == pdFALSE) {
continue;
}
spr_.fillSprite(TFT_BLACK);
if (state.config.num_positions > 1) {
int32_t height = state.current_position * TFT_HEIGHT / (state.config.num_positions - 1);
spr_.fillRect(0, TFT_HEIGHT - height, TFT_WIDTH, height, FILL_COLOR);
}
spr_.setFreeFont(&Roboto_Light_60);
spr_.drawString(String() + state.current_position, TFT_WIDTH / 2, TFT_HEIGHT / 2 - VALUE_OFFSET, 1);
spr_.setFreeFont(&DESCRIPTION_FONT);
int32_t line_y = TFT_HEIGHT / 2 + DESCRIPTION_Y_OFFSET;
char* start = state.config.descriptor;
char* end = start + strlen(state.config.descriptor);
while (start < end) {
char* newline = strchr(start, '\n');
if (newline == nullptr) {
newline = end;
}
char buf[sizeof(state.config.descriptor)] = {};
strncat(buf, start, min(sizeof(buf) - 1, (size_t)(newline - start)));
spr_.drawString(String(buf), TFT_WIDTH / 2, line_y, 1);
start = newline + 1;
line_y += spr_.fontHeight(1);
}
float left_bound = PI / 2;
if (state.config.num_positions > 0) {
float range_radians = (state.config.num_positions - 1) * state.config.position_width_radians;
left_bound = PI / 2 + range_radians / 2;
float right_bound = PI / 2 - range_radians / 2;
spr_.drawLine(TFT_WIDTH/2 + RADIUS * cosf(left_bound), TFT_HEIGHT/2 - RADIUS * sinf(left_bound), TFT_WIDTH/2 + (RADIUS - 10) * cosf(left_bound), TFT_HEIGHT/2 - (RADIUS - 10) * sinf(left_bound), TFT_WHITE);
spr_.drawLine(TFT_WIDTH/2 + RADIUS * cosf(right_bound), TFT_HEIGHT/2 - RADIUS * sinf(right_bound), TFT_WIDTH/2 + (RADIUS - 10) * cosf(right_bound), TFT_HEIGHT/2 - (RADIUS - 10) * sinf(right_bound), TFT_WHITE);
}
if (DRAW_ARC) {
spr_.drawCircle(TFT_WIDTH/2, TFT_HEIGHT/2, RADIUS, TFT_DARKGREY);
}
float adjusted_sub_position = state.sub_position_unit * state.config.position_width_radians;
if (state.config.num_positions > 0) {
if (state.current_position == 0 && state.sub_position_unit < 0) {
adjusted_sub_position = -logf(1 - state.sub_position_unit * state.config.position_width_radians / 5 / PI * 180) * 5 * PI / 180;
} else if (state.current_position == state.config.num_positions - 1 && state.sub_position_unit > 0) {
adjusted_sub_position = logf(1 + state.sub_position_unit * state.config.position_width_radians / 5 / PI * 180) * 5 * PI / 180;
}
}
float raw_angle = left_bound - state.current_position * state.config.position_width_radians;
float adjusted_angle = raw_angle - adjusted_sub_position;
if (state.config.num_positions > 0 && ((state.current_position == 0 && state.sub_position_unit < 0) || (state.current_position == state.config.num_positions - 1 && state.sub_position_unit > 0))) {
spr_.fillCircle(TFT_WIDTH/2 + (RADIUS - 10) * cosf(raw_angle), TFT_HEIGHT/2 - (RADIUS - 10) * sinf(raw_angle), 5, DOT_COLOR);
if (raw_angle < adjusted_angle) {
for (float r = raw_angle; r <= adjusted_angle; r += 2 * PI / 180) {
spr_.fillCircle(TFT_WIDTH/2 + (RADIUS - 10) * cosf(r), TFT_HEIGHT/2 - (RADIUS - 10) * sinf(r), 2, DOT_COLOR);
}
spr_.fillCircle(TFT_WIDTH/2 + (RADIUS - 10) * cosf(adjusted_angle), TFT_HEIGHT/2 - (RADIUS - 10) * sinf(adjusted_angle), 2, DOT_COLOR);
} else {
for (float r = raw_angle; r >= adjusted_angle; r -= 2 * PI / 180) {
spr_.fillCircle(TFT_WIDTH/2 + (RADIUS - 10) * cosf(r), TFT_HEIGHT/2 - (RADIUS - 10) * sinf(r), 2, DOT_COLOR);
}
spr_.fillCircle(TFT_WIDTH/2 + (RADIUS - 10) * cosf(adjusted_angle), TFT_HEIGHT/2 - (RADIUS - 10) * sinf(adjusted_angle), 2, DOT_COLOR);
}
} else {
spr_.fillCircle(TFT_WIDTH/2 + (RADIUS - 10) * cosf(adjusted_angle), TFT_HEIGHT/2 - (RADIUS - 10) * sinf(adjusted_angle), 5, DOT_COLOR);
}
spr_.pushSprite(0, 0);
{
SemaphoreGuard lock(mutex_);
ledcWrite(LEDC_CHANNEL_LCD_BACKLIGHT, brightness_);
}
delay(2);
}
}
QueueHandle_t DisplayTask::getKnobStateQueue() {
return knob_state_queue_;
}
void DisplayTask::setBrightness(uint16_t brightness) {
SemaphoreGuard lock(mutex_);
brightness_ = brightness;
}
#endif