Files
RFID.MFRC522/MFRC522.cpp
Alexander Inyukhin 76adf6e383 Authenticate devices with long uids
It seems that the last four uid bytes should be used for
auth instead of first ones.

This patch allows to work with Mifare plus cards in SL1 mode,
that have 7 byte uids (e.g. Troyka transport cards.)

See also "3.2.5 MIFARE Classic Authentication" of AN10927 document.
http://cache.nxp.com/documents/application_note/AN10927.pdf
2016-09-10 15:47:55 +03:00

1868 lines
71 KiB
C++
Raw Blame History

/*
* MFRC522.cpp - Library to use ARDUINO RFID MODULE KIT 13.56 MHZ WITH TAGS SPI W AND R BY COOQROBOT.
* NOTE: Please also check the comments in MFRC522.h - they provide useful hints and background information.
* Released into the public domain.
*/
#include <Arduino.h>
#include <MFRC522.h>
/////////////////////////////////////////////////////////////////////////////////////
// Functions for setting up the Arduino
/////////////////////////////////////////////////////////////////////////////////////
/**
* Constructor.
*/
MFRC522::MFRC522() {
} // End constructor
/**
* Constructor.
* Prepares the output pins.
*/
MFRC522::MFRC522( byte resetPowerDownPin ///< Arduino pin connected to MFRC522's reset and power down input (Pin 6, NRSTPD, active low)
): MFRC522(SS, resetPowerDownPin) { // SS is defined in pins_arduino.h
} // End constructor
/**
* Constructor.
* Prepares the output pins.
*/
MFRC522::MFRC522( byte chipSelectPin, ///< Arduino pin connected to MFRC522's SPI slave select input (Pin 24, NSS, active low)
byte resetPowerDownPin ///< Arduino pin connected to MFRC522's reset and power down input (Pin 6, NRSTPD, active low)
) {
_chipSelectPin = chipSelectPin;
_resetPowerDownPin = resetPowerDownPin;
} // End constructor
/////////////////////////////////////////////////////////////////////////////////////
// Basic interface functions for communicating with the MFRC522
/////////////////////////////////////////////////////////////////////////////////////
/**
* Writes a byte to the specified register in the MFRC522 chip.
* The interface is described in the datasheet section 8.1.2.
*/
void MFRC522::PCD_WriteRegister( byte reg, ///< The register to write to. One of the PCD_Register enums.
byte value ///< The value to write.
) {
SPI.beginTransaction(SPISettings(SPI_CLOCK_DIV4, MSBFIRST, SPI_MODE0)); // Set the settings to work with SPI bus
digitalWrite(_chipSelectPin, LOW); // Select slave
SPI.transfer(reg & 0x7E); // MSB == 0 is for writing. LSB is not used in address. Datasheet section 8.1.2.3.
SPI.transfer(value);
digitalWrite(_chipSelectPin, HIGH); // Release slave again
SPI.endTransaction(); // Stop using the SPI bus
} // End PCD_WriteRegister()
/**
* Writes a number of bytes to the specified register in the MFRC522 chip.
* The interface is described in the datasheet section 8.1.2.
*/
void MFRC522::PCD_WriteRegister( byte reg, ///< The register to write to. One of the PCD_Register enums.
byte count, ///< The number of bytes to write to the register
byte *values ///< The values to write. Byte array.
) {
SPI.beginTransaction(SPISettings(SPI_CLOCK_DIV4, MSBFIRST, SPI_MODE0)); // Set the settings to work with SPI bus
digitalWrite(_chipSelectPin, LOW); // Select slave
SPI.transfer(reg & 0x7E); // MSB == 0 is for writing. LSB is not used in address. Datasheet section 8.1.2.3.
for (byte index = 0; index < count; index++) {
SPI.transfer(values[index]);
}
digitalWrite(_chipSelectPin, HIGH); // Release slave again
SPI.endTransaction(); // Stop using the SPI bus
} // End PCD_WriteRegister()
/**
* Reads a byte from the specified register in the MFRC522 chip.
* The interface is described in the datasheet section 8.1.2.
*/
byte MFRC522::PCD_ReadRegister( byte reg ///< The register to read from. One of the PCD_Register enums.
) {
byte value;
SPI.beginTransaction(SPISettings(SPI_CLOCK_DIV4, MSBFIRST, SPI_MODE0)); // Set the settings to work with SPI bus
digitalWrite(_chipSelectPin, LOW); // Select slave
SPI.transfer(0x80 | (reg & 0x7E)); // MSB == 1 is for reading. LSB is not used in address. Datasheet section 8.1.2.3.
value = SPI.transfer(0); // Read the value back. Send 0 to stop reading.
digitalWrite(_chipSelectPin, HIGH); // Release slave again
SPI.endTransaction(); // Stop using the SPI bus
return value;
} // End PCD_ReadRegister()
/**
* Reads a number of bytes from the specified register in the MFRC522 chip.
* The interface is described in the datasheet section 8.1.2.
*/
void MFRC522::PCD_ReadRegister( byte reg, ///< The register to read from. One of the PCD_Register enums.
byte count, ///< The number of bytes to read
byte *values, ///< Byte array to store the values in.
byte rxAlign ///< Only bit positions rxAlign..7 in values[0] are updated.
) {
if (count == 0) {
return;
}
//Serial.print(F("Reading ")); Serial.print(count); Serial.println(F(" bytes from register."));
byte address = 0x80 | (reg & 0x7E); // MSB == 1 is for reading. LSB is not used in address. Datasheet section 8.1.2.3.
byte index = 0; // Index in values array.
SPI.beginTransaction(SPISettings(SPI_CLOCK_DIV4, MSBFIRST, SPI_MODE0)); // Set the settings to work with SPI bus
digitalWrite(_chipSelectPin, LOW); // Select slave
count--; // One read is performed outside of the loop
SPI.transfer(address); // Tell MFRC522 which address we want to read
while (index < count) {
if (index == 0 && rxAlign) { // Only update bit positions rxAlign..7 in values[0]
// Create bit mask for bit positions rxAlign..7
byte mask = 0;
for (byte i = rxAlign; i <= 7; i++) {
mask |= (1 << i);
}
// Read value and tell that we want to read the same address again.
byte value = SPI.transfer(address);
// Apply mask to both current value of values[0] and the new data in value.
values[0] = (values[index] & ~mask) | (value & mask);
}
else { // Normal case
values[index] = SPI.transfer(address); // Read value and tell that we want to read the same address again.
}
index++;
}
values[index] = SPI.transfer(0); // Read the final byte. Send 0 to stop reading.
digitalWrite(_chipSelectPin, HIGH); // Release slave again
SPI.endTransaction(); // Stop using the SPI bus
} // End PCD_ReadRegister()
/**
* Sets the bits given in mask in register reg.
*/
void MFRC522::PCD_SetRegisterBitMask( byte reg, ///< The register to update. One of the PCD_Register enums.
byte mask ///< The bits to set.
) {
byte tmp;
tmp = PCD_ReadRegister(reg);
PCD_WriteRegister(reg, tmp | mask); // set bit mask
} // End PCD_SetRegisterBitMask()
/**
* Clears the bits given in mask from register reg.
*/
void MFRC522::PCD_ClearRegisterBitMask( byte reg, ///< The register to update. One of the PCD_Register enums.
byte mask ///< The bits to clear.
) {
byte tmp;
tmp = PCD_ReadRegister(reg);
PCD_WriteRegister(reg, tmp & (~mask)); // clear bit mask
} // End PCD_ClearRegisterBitMask()
/**
* Use the CRC coprocessor in the MFRC522 to calculate a CRC_A.
*
* @return STATUS_OK on success, STATUS_??? otherwise.
*/
MFRC522::StatusCode MFRC522::PCD_CalculateCRC( byte *data, ///< In: Pointer to the data to transfer to the FIFO for CRC calculation.
byte length, ///< In: The number of bytes to transfer.
byte *result ///< Out: Pointer to result buffer. Result is written to result[0..1], low byte first.
) {
PCD_WriteRegister(CommandReg, PCD_Idle); // Stop any active command.
PCD_WriteRegister(DivIrqReg, 0x04); // Clear the CRCIRq interrupt request bit
PCD_SetRegisterBitMask(FIFOLevelReg, 0x80); // FlushBuffer = 1, FIFO initialization
PCD_WriteRegister(FIFODataReg, length, data); // Write data to the FIFO
PCD_WriteRegister(CommandReg, PCD_CalcCRC); // Start the calculation
// Wait for the CRC calculation to complete. Each iteration of the while-loop takes 17.73<EFBFBD>s.
word i = 5000;
byte n;
while (1) {
n = PCD_ReadRegister(DivIrqReg); // DivIrqReg[7..0] bits are: Set2 reserved reserved MfinActIRq reserved CRCIRq reserved reserved
if (n & 0x04) { // CRCIRq bit set - calculation done
break;
}
if (--i == 0) { // The emergency break. We will eventually terminate on this one after 89ms. Communication with the MFRC522 might be down.
return STATUS_TIMEOUT;
}
}
PCD_WriteRegister(CommandReg, PCD_Idle); // Stop calculating CRC for new content in the FIFO.
// Transfer the result from the registers to the result buffer
result[0] = PCD_ReadRegister(CRCResultRegL);
result[1] = PCD_ReadRegister(CRCResultRegH);
return STATUS_OK;
} // End PCD_CalculateCRC()
/////////////////////////////////////////////////////////////////////////////////////
// Functions for manipulating the MFRC522
/////////////////////////////////////////////////////////////////////////////////////
/**
* Initializes the MFRC522 chip.
*/
void MFRC522::PCD_Init() {
// Set the chipSelectPin as digital output, do not select the slave yet
pinMode(_chipSelectPin, OUTPUT);
digitalWrite(_chipSelectPin, HIGH);
// Set the resetPowerDownPin as digital output, do not reset or power down.
pinMode(_resetPowerDownPin, OUTPUT);
if (digitalRead(_resetPowerDownPin) == LOW) { //The MFRC522 chip is in power down mode.
digitalWrite(_resetPowerDownPin, HIGH); // Exit power down mode. This triggers a hard reset.
// Section 8.8.2 in the datasheet says the oscillator start-up time is the start up time of the crystal + 37,74<37>s. Let us be generous: 50ms.
delay(50);
}
else { // Perform a soft reset
PCD_Reset();
}
// When communicating with a PICC we need a timeout if something goes wrong.
// f_timer = 13.56 MHz / (2*TPreScaler+1) where TPreScaler = [TPrescaler_Hi:TPrescaler_Lo].
// TPrescaler_Hi are the four low bits in TModeReg. TPrescaler_Lo is TPrescalerReg.
PCD_WriteRegister(TModeReg, 0x80); // TAuto=1; timer starts automatically at the end of the transmission in all communication modes at all speeds
PCD_WriteRegister(TPrescalerReg, 0xA9); // TPreScaler = TModeReg[3..0]:TPrescalerReg, ie 0x0A9 = 169 => f_timer=40kHz, ie a timer period of 25<32>s.
PCD_WriteRegister(TReloadRegH, 0x03); // Reload timer with 0x3E8 = 1000, ie 25ms before timeout.
PCD_WriteRegister(TReloadRegL, 0xE8);
PCD_WriteRegister(TxASKReg, 0x40); // Default 0x00. Force a 100 % ASK modulation independent of the ModGsPReg register setting
PCD_WriteRegister(ModeReg, 0x3D); // Default 0x3F. Set the preset value for the CRC coprocessor for the CalcCRC command to 0x6363 (ISO 14443-3 part 6.2.4)
PCD_AntennaOn(); // Enable the antenna driver pins TX1 and TX2 (they were disabled by the reset)
} // End PCD_Init()
/**
* Initializes the MFRC522 chip.
*/
void MFRC522::PCD_Init( byte resetPowerDownPin ///< Arduino pin connected to MFRC522's reset and power down input (Pin 6, NRSTPD, active low)
) {
PCD_Init(SS, resetPowerDownPin); // SS is defined in pins_arduino.h
} // End PCD_Init()
/**
* Initializes the MFRC522 chip.
*/
void MFRC522::PCD_Init( byte chipSelectPin, ///< Arduino pin connected to MFRC522's SPI slave select input (Pin 24, NSS, active low)
byte resetPowerDownPin ///< Arduino pin connected to MFRC522's reset and power down input (Pin 6, NRSTPD, active low)
) {
_chipSelectPin = chipSelectPin;
_resetPowerDownPin = resetPowerDownPin;
// Set the chipSelectPin as digital output, do not select the slave yet
PCD_Init();
} // End PCD_Init()
/**
* Performs a soft reset on the MFRC522 chip and waits for it to be ready again.
*/
void MFRC522::PCD_Reset() {
PCD_WriteRegister(CommandReg, PCD_SoftReset); // Issue the SoftReset command.
// The datasheet does not mention how long the SoftRest command takes to complete.
// But the MFRC522 might have been in soft power-down mode (triggered by bit 4 of CommandReg)
// Section 8.8.2 in the datasheet says the oscillator start-up time is the start up time of the crystal + 37,74<37>s. Let us be generous: 50ms.
delay(50);
// Wait for the PowerDown bit in CommandReg to be cleared
while (PCD_ReadRegister(CommandReg) & (1<<4)) {
// PCD still restarting - unlikely after waiting 50ms, but better safe than sorry.
}
} // End PCD_Reset()
/**
* Turns the antenna on by enabling pins TX1 and TX2.
* After a reset these pins are disabled.
*/
void MFRC522::PCD_AntennaOn() {
byte value = PCD_ReadRegister(TxControlReg);
if ((value & 0x03) != 0x03) {
PCD_WriteRegister(TxControlReg, value | 0x03);
}
} // End PCD_AntennaOn()
/**
* Turns the antenna off by disabling pins TX1 and TX2.
*/
void MFRC522::PCD_AntennaOff() {
PCD_ClearRegisterBitMask(TxControlReg, 0x03);
} // End PCD_AntennaOff()
/**
* Get the current MFRC522 Receiver Gain (RxGain[2:0]) value.
* See 9.3.3.6 / table 98 in http://www.nxp.com/documents/data_sheet/MFRC522.pdf
* NOTE: Return value scrubbed with (0x07<<4)=01110000b as RCFfgReg may use reserved bits.
*
* @return Value of the RxGain, scrubbed to the 3 bits used.
*/
byte MFRC522::PCD_GetAntennaGain() {
return PCD_ReadRegister(RFCfgReg) & (0x07<<4);
} // End PCD_GetAntennaGain()
/**
* Set the MFRC522 Receiver Gain (RxGain) to value specified by given mask.
* See 9.3.3.6 / table 98 in http://www.nxp.com/documents/data_sheet/MFRC522.pdf
* NOTE: Given mask is scrubbed with (0x07<<4)=01110000b as RCFfgReg may use reserved bits.
*/
void MFRC522::PCD_SetAntennaGain(byte mask) {
if (PCD_GetAntennaGain() != mask) { // only bother if there is a change
PCD_ClearRegisterBitMask(RFCfgReg, (0x07<<4)); // clear needed to allow 000 pattern
PCD_SetRegisterBitMask(RFCfgReg, mask & (0x07<<4)); // only set RxGain[2:0] bits
}
} // End PCD_SetAntennaGain()
/**
* Performs a self-test of the MFRC522
* See 16.1.1 in http://www.nxp.com/documents/data_sheet/MFRC522.pdf
*
* @return Whether or not the test passed. Or false if no firmware reference is available.
*/
bool MFRC522::PCD_PerformSelfTest() {
// This follows directly the steps outlined in 16.1.1
// 1. Perform a soft reset.
PCD_Reset();
// 2. Clear the internal buffer by writing 25 bytes of 00h
byte ZEROES[25] = {0x00};
PCD_SetRegisterBitMask(FIFOLevelReg, 0x80); // flush the FIFO buffer
PCD_WriteRegister(FIFODataReg, 25, ZEROES); // write 25 bytes of 00h to FIFO
PCD_WriteRegister(CommandReg, PCD_Mem); // transfer to internal buffer
// 3. Enable self-test
PCD_WriteRegister(AutoTestReg, 0x09);
// 4. Write 00h to FIFO buffer
PCD_WriteRegister(FIFODataReg, 0x00);
// 5. Start self-test by issuing the CalcCRC command
PCD_WriteRegister(CommandReg, PCD_CalcCRC);
// 6. Wait for self-test to complete
word i;
byte n;
for (i = 0; i < 0xFF; i++) {
n = PCD_ReadRegister(DivIrqReg); // DivIrqReg[7..0] bits are: Set2 reserved reserved MfinActIRq reserved CRCIRq reserved reserved
if (n & 0x04) { // CRCIRq bit set - calculation done
break;
}
}
PCD_WriteRegister(CommandReg, PCD_Idle); // Stop calculating CRC for new content in the FIFO.
// 7. Read out resulting 64 bytes from the FIFO buffer.
byte result[64];
PCD_ReadRegister(FIFODataReg, 64, result, 0);
// Auto self-test done
// Reset AutoTestReg register to be 0 again. Required for normal operation.
PCD_WriteRegister(AutoTestReg, 0x00);
// Determine firmware version (see section 9.3.4.8 in spec)
byte version = PCD_ReadRegister(VersionReg);
// Pick the appropriate reference values
const byte *reference;
switch (version) {
case 0x88: // Fudan Semiconductor FM17522 clone
reference = FM17522_firmware_reference;
break;
case 0x90: // Version 0.0
reference = MFRC522_firmware_referenceV0_0;
break;
case 0x91: // Version 1.0
reference = MFRC522_firmware_referenceV1_0;
break;
case 0x92: // Version 2.0
reference = MFRC522_firmware_referenceV2_0;
break;
default: // Unknown version
return false; // abort test
}
// Verify that the results match up to our expectations
for (i = 0; i < 64; i++) {
if (result[i] != pgm_read_byte(&(reference[i]))) {
return false;
}
}
// Test passed; all is good.
return true;
} // End PCD_PerformSelfTest()
/////////////////////////////////////////////////////////////////////////////////////
// Functions for communicating with PICCs
/////////////////////////////////////////////////////////////////////////////////////
/**
* Executes the Transceive command.
* CRC validation can only be done if backData and backLen are specified.
*
* @return STATUS_OK on success, STATUS_??? otherwise.
*/
MFRC522::StatusCode MFRC522::PCD_TransceiveData( byte *sendData, ///< Pointer to the data to transfer to the FIFO.
byte sendLen, ///< Number of bytes to transfer to the FIFO.
byte *backData, ///< NULL or pointer to buffer if data should be read back after executing the command.
byte *backLen, ///< In: Max number of bytes to write to *backData. Out: The number of bytes returned.
byte *validBits, ///< In/Out: The number of valid bits in the last byte. 0 for 8 valid bits. Default NULL.
byte rxAlign, ///< In: Defines the bit position in backData[0] for the first bit received. Default 0.
bool checkCRC ///< In: True => The last two bytes of the response is assumed to be a CRC_A that must be validated.
) {
byte waitIRq = 0x30; // RxIRq and IdleIRq
return PCD_CommunicateWithPICC(PCD_Transceive, waitIRq, sendData, sendLen, backData, backLen, validBits, rxAlign, checkCRC);
} // End PCD_TransceiveData()
/**
* Transfers data to the MFRC522 FIFO, executes a command, waits for completion and transfers data back from the FIFO.
* CRC validation can only be done if backData and backLen are specified.
*
* @return STATUS_OK on success, STATUS_??? otherwise.
*/
MFRC522::StatusCode MFRC522::PCD_CommunicateWithPICC( byte command, ///< The command to execute. One of the PCD_Command enums.
byte waitIRq, ///< The bits in the ComIrqReg register that signals successful completion of the command.
byte *sendData, ///< Pointer to the data to transfer to the FIFO.
byte sendLen, ///< Number of bytes to transfer to the FIFO.
byte *backData, ///< NULL or pointer to buffer if data should be read back after executing the command.
byte *backLen, ///< In: Max number of bytes to write to *backData. Out: The number of bytes returned.
byte *validBits, ///< In/Out: The number of valid bits in the last byte. 0 for 8 valid bits.
byte rxAlign, ///< In: Defines the bit position in backData[0] for the first bit received. Default 0.
bool checkCRC ///< In: True => The last two bytes of the response is assumed to be a CRC_A that must be validated.
) {
byte n, _validBits;
unsigned int i;
// Prepare values for BitFramingReg
byte txLastBits = validBits ? *validBits : 0;
byte bitFraming = (rxAlign << 4) + txLastBits; // RxAlign = BitFramingReg[6..4]. TxLastBits = BitFramingReg[2..0]
PCD_WriteRegister(CommandReg, PCD_Idle); // Stop any active command.
PCD_WriteRegister(ComIrqReg, 0x7F); // Clear all seven interrupt request bits
PCD_SetRegisterBitMask(FIFOLevelReg, 0x80); // FlushBuffer = 1, FIFO initialization
PCD_WriteRegister(FIFODataReg, sendLen, sendData); // Write sendData to the FIFO
PCD_WriteRegister(BitFramingReg, bitFraming); // Bit adjustments
PCD_WriteRegister(CommandReg, command); // Execute the command
if (command == PCD_Transceive) {
PCD_SetRegisterBitMask(BitFramingReg, 0x80); // StartSend=1, transmission of data starts
}
// Wait for the command to complete.
// In PCD_Init() we set the TAuto flag in TModeReg. This means the timer automatically starts when the PCD stops transmitting.
// Each iteration of the do-while-loop takes 17.86<EFBFBD>s.
i = 2000;
while (1) {
n = PCD_ReadRegister(ComIrqReg); // ComIrqReg[7..0] bits are: Set1 TxIRq RxIRq IdleIRq HiAlertIRq LoAlertIRq ErrIRq TimerIRq
if (n & waitIRq) { // One of the interrupts that signal success has been set.
break;
}
if (n & 0x01) { // Timer interrupt - nothing received in 25ms
return STATUS_TIMEOUT;
}
if (--i == 0) { // The emergency break. If all other conditions fail we will eventually terminate on this one after 35.7ms. Communication with the MFRC522 might be down.
return STATUS_TIMEOUT;
}
}
// Stop now if any errors except collisions were detected.
byte errorRegValue = PCD_ReadRegister(ErrorReg); // ErrorReg[7..0] bits are: WrErr TempErr reserved BufferOvfl CollErr CRCErr ParityErr ProtocolErr
if (errorRegValue & 0x13) { // BufferOvfl ParityErr ProtocolErr
return STATUS_ERROR;
}
// If the caller wants data back, get it from the MFRC522.
if (backData && backLen) {
n = PCD_ReadRegister(FIFOLevelReg); // Number of bytes in the FIFO
if (n > *backLen) {
return STATUS_NO_ROOM;
}
*backLen = n; // Number of bytes returned
PCD_ReadRegister(FIFODataReg, n, backData, rxAlign); // Get received data from FIFO
_validBits = PCD_ReadRegister(ControlReg) & 0x07; // RxLastBits[2:0] indicates the number of valid bits in the last received byte. If this value is 000b, the whole byte is valid.
if (validBits) {
*validBits = _validBits;
}
}
// Tell about collisions
if (errorRegValue & 0x08) { // CollErr
return STATUS_COLLISION;
}
// Perform CRC_A validation if requested.
if (backData && backLen && checkCRC) {
// In this case a MIFARE Classic NAK is not OK.
if (*backLen == 1 && _validBits == 4) {
return STATUS_MIFARE_NACK;
}
// We need at least the CRC_A value and all 8 bits of the last byte must be received.
if (*backLen < 2 || _validBits != 0) {
return STATUS_CRC_WRONG;
}
// Verify CRC_A - do our own calculation and store the control in controlBuffer.
byte controlBuffer[2];
MFRC522::StatusCode status = PCD_CalculateCRC(&backData[0], *backLen - 2, &controlBuffer[0]);
if (status != STATUS_OK) {
return status;
}
if ((backData[*backLen - 2] != controlBuffer[0]) || (backData[*backLen - 1] != controlBuffer[1])) {
return STATUS_CRC_WRONG;
}
}
return STATUS_OK;
} // End PCD_CommunicateWithPICC()
/**
* Transmits a REQuest command, Type A. Invites PICCs in state IDLE to go to READY and prepare for anticollision or selection. 7 bit frame.
* Beware: When two PICCs are in the field at the same time I often get STATUS_TIMEOUT - probably due do bad antenna design.
*
* @return STATUS_OK on success, STATUS_??? otherwise.
*/
MFRC522::StatusCode MFRC522::PICC_RequestA( byte *bufferATQA, ///< The buffer to store the ATQA (Answer to request) in
byte *bufferSize ///< Buffer size, at least two bytes. Also number of bytes returned if STATUS_OK.
) {
return PICC_REQA_or_WUPA(PICC_CMD_REQA, bufferATQA, bufferSize);
} // End PICC_RequestA()
/**
* Transmits a Wake-UP command, Type A. Invites PICCs in state IDLE and HALT to go to READY(*) and prepare for anticollision or selection. 7 bit frame.
* Beware: When two PICCs are in the field at the same time I often get STATUS_TIMEOUT - probably due do bad antenna design.
*
* @return STATUS_OK on success, STATUS_??? otherwise.
*/
MFRC522::StatusCode MFRC522::PICC_WakeupA( byte *bufferATQA, ///< The buffer to store the ATQA (Answer to request) in
byte *bufferSize ///< Buffer size, at least two bytes. Also number of bytes returned if STATUS_OK.
) {
return PICC_REQA_or_WUPA(PICC_CMD_WUPA, bufferATQA, bufferSize);
} // End PICC_WakeupA()
/**
* Transmits REQA or WUPA commands.
* Beware: When two PICCs are in the field at the same time I often get STATUS_TIMEOUT - probably due do bad antenna design.
*
* @return STATUS_OK on success, STATUS_??? otherwise.
*/
MFRC522::StatusCode MFRC522::PICC_REQA_or_WUPA( byte command, ///< The command to send - PICC_CMD_REQA or PICC_CMD_WUPA
byte *bufferATQA, ///< The buffer to store the ATQA (Answer to request) in
byte *bufferSize ///< Buffer size, at least two bytes. Also number of bytes returned if STATUS_OK.
) {
byte validBits;
MFRC522::StatusCode status;
if (bufferATQA == NULL || *bufferSize < 2) { // The ATQA response is 2 bytes long.
return STATUS_NO_ROOM;
}
PCD_ClearRegisterBitMask(CollReg, 0x80); // ValuesAfterColl=1 => Bits received after collision are cleared.
validBits = 7; // For REQA and WUPA we need the short frame format - transmit only 7 bits of the last (and only) byte. TxLastBits = BitFramingReg[2..0]
status = PCD_TransceiveData(&command, 1, bufferATQA, bufferSize, &validBits);
if (status != STATUS_OK) {
return status;
}
if (*bufferSize != 2 || validBits != 0) { // ATQA must be exactly 16 bits.
return STATUS_ERROR;
}
return STATUS_OK;
} // End PICC_REQA_or_WUPA()
/**
* Transmits SELECT/ANTICOLLISION commands to select a single PICC.
* Before calling this function the PICCs must be placed in the READY(*) state by calling PICC_RequestA() or PICC_WakeupA().
* On success:
* - The chosen PICC is in state ACTIVE(*) and all other PICCs have returned to state IDLE/HALT. (Figure 7 of the ISO/IEC 14443-3 draft.)
* - The UID size and value of the chosen PICC is returned in *uid along with the SAK.
*
* A PICC UID consists of 4, 7 or 10 bytes.
* Only 4 bytes can be specified in a SELECT command, so for the longer UIDs two or three iterations are used:
* UID size Number of UID bytes Cascade levels Example of PICC
* ======== =================== ============== ===============
* single 4 1 MIFARE Classic
* double 7 2 MIFARE Ultralight
* triple 10 3 Not currently in use?
*
* @return STATUS_OK on success, STATUS_??? otherwise.
*/
MFRC522::StatusCode MFRC522::PICC_Select( Uid *uid, ///< Pointer to Uid struct. Normally output, but can also be used to supply a known UID.
byte validBits ///< The number of known UID bits supplied in *uid. Normally 0. If set you must also supply uid->size.
) {
bool uidComplete;
bool selectDone;
bool useCascadeTag;
byte cascadeLevel = 1;
MFRC522::StatusCode result;
byte count;
byte index;
byte uidIndex; // The first index in uid->uidByte[] that is used in the current Cascade Level.
int8_t currentLevelKnownBits; // The number of known UID bits in the current Cascade Level.
byte buffer[9]; // The SELECT/ANTICOLLISION commands uses a 7 byte standard frame + 2 bytes CRC_A
byte bufferUsed; // The number of bytes used in the buffer, ie the number of bytes to transfer to the FIFO.
byte rxAlign; // Used in BitFramingReg. Defines the bit position for the first bit received.
byte txLastBits; // Used in BitFramingReg. The number of valid bits in the last transmitted byte.
byte *responseBuffer;
byte responseLength;
// Description of buffer structure:
// Byte 0: SEL Indicates the Cascade Level: PICC_CMD_SEL_CL1, PICC_CMD_SEL_CL2 or PICC_CMD_SEL_CL3
// Byte 1: NVB Number of Valid Bits (in complete command, not just the UID): High nibble: complete bytes, Low nibble: Extra bits.
// Byte 2: UID-data or CT See explanation below. CT means Cascade Tag.
// Byte 3: UID-data
// Byte 4: UID-data
// Byte 5: UID-data
// Byte 6: BCC Block Check Character - XOR of bytes 2-5
// Byte 7: CRC_A
// Byte 8: CRC_A
// The BCC and CRC_A are only transmitted if we know all the UID bits of the current Cascade Level.
//
// Description of bytes 2-5: (Section 6.5.4 of the ISO/IEC 14443-3 draft: UID contents and cascade levels)
// UID size Cascade level Byte2 Byte3 Byte4 Byte5
// ======== ============= ===== ===== ===== =====
// 4 bytes 1 uid0 uid1 uid2 uid3
// 7 bytes 1 CT uid0 uid1 uid2
// 2 uid3 uid4 uid5 uid6
// 10 bytes 1 CT uid0 uid1 uid2
// 2 CT uid3 uid4 uid5
// 3 uid6 uid7 uid8 uid9
// Sanity checks
if (validBits > 80) {
return STATUS_INVALID;
}
// Prepare MFRC522
PCD_ClearRegisterBitMask(CollReg, 0x80); // ValuesAfterColl=1 => Bits received after collision are cleared.
// Repeat Cascade Level loop until we have a complete UID.
uidComplete = false;
while (!uidComplete) {
// Set the Cascade Level in the SEL byte, find out if we need to use the Cascade Tag in byte 2.
switch (cascadeLevel) {
case 1:
buffer[0] = PICC_CMD_SEL_CL1;
uidIndex = 0;
useCascadeTag = validBits && uid->size > 4; // When we know that the UID has more than 4 bytes
break;
case 2:
buffer[0] = PICC_CMD_SEL_CL2;
uidIndex = 3;
useCascadeTag = validBits && uid->size > 7; // When we know that the UID has more than 7 bytes
break;
case 3:
buffer[0] = PICC_CMD_SEL_CL3;
uidIndex = 6;
useCascadeTag = false; // Never used in CL3.
break;
default:
return STATUS_INTERNAL_ERROR;
break;
}
// How many UID bits are known in this Cascade Level?
currentLevelKnownBits = validBits - (8 * uidIndex);
if (currentLevelKnownBits < 0) {
currentLevelKnownBits = 0;
}
// Copy the known bits from uid->uidByte[] to buffer[]
index = 2; // destination index in buffer[]
if (useCascadeTag) {
buffer[index++] = PICC_CMD_CT;
}
byte bytesToCopy = currentLevelKnownBits / 8 + (currentLevelKnownBits % 8 ? 1 : 0); // The number of bytes needed to represent the known bits for this level.
if (bytesToCopy) {
byte maxBytes = useCascadeTag ? 3 : 4; // Max 4 bytes in each Cascade Level. Only 3 left if we use the Cascade Tag
if (bytesToCopy > maxBytes) {
bytesToCopy = maxBytes;
}
for (count = 0; count < bytesToCopy; count++) {
buffer[index++] = uid->uidByte[uidIndex + count];
}
}
// Now that the data has been copied we need to include the 8 bits in CT in currentLevelKnownBits
if (useCascadeTag) {
currentLevelKnownBits += 8;
}
// Repeat anti collision loop until we can transmit all UID bits + BCC and receive a SAK - max 32 iterations.
selectDone = false;
while (!selectDone) {
// Find out how many bits and bytes to send and receive.
if (currentLevelKnownBits >= 32) { // All UID bits in this Cascade Level are known. This is a SELECT.
//Serial.print(F("SELECT: currentLevelKnownBits=")); Serial.println(currentLevelKnownBits, DEC);
buffer[1] = 0x70; // NVB - Number of Valid Bits: Seven whole bytes
// Calculate BCC - Block Check Character
buffer[6] = buffer[2] ^ buffer[3] ^ buffer[4] ^ buffer[5];
// Calculate CRC_A
result = PCD_CalculateCRC(buffer, 7, &buffer[7]);
if (result != STATUS_OK) {
return result;
}
txLastBits = 0; // 0 => All 8 bits are valid.
bufferUsed = 9;
// Store response in the last 3 bytes of buffer (BCC and CRC_A - not needed after tx)
responseBuffer = &buffer[6];
responseLength = 3;
}
else { // This is an ANTICOLLISION.
//Serial.print(F("ANTICOLLISION: currentLevelKnownBits=")); Serial.println(currentLevelKnownBits, DEC);
txLastBits = currentLevelKnownBits % 8;
count = currentLevelKnownBits / 8; // Number of whole bytes in the UID part.
index = 2 + count; // Number of whole bytes: SEL + NVB + UIDs
buffer[1] = (index << 4) + txLastBits; // NVB - Number of Valid Bits
bufferUsed = index + (txLastBits ? 1 : 0);
// Store response in the unused part of buffer
responseBuffer = &buffer[index];
responseLength = sizeof(buffer) - index;
}
// Set bit adjustments
rxAlign = txLastBits; // Having a separate variable is overkill. But it makes the next line easier to read.
PCD_WriteRegister(BitFramingReg, (rxAlign << 4) + txLastBits); // RxAlign = BitFramingReg[6..4]. TxLastBits = BitFramingReg[2..0]
// Transmit the buffer and receive the response.
result = PCD_TransceiveData(buffer, bufferUsed, responseBuffer, &responseLength, &txLastBits, rxAlign);
if (result == STATUS_COLLISION) { // More than one PICC in the field => collision.
byte valueOfCollReg = PCD_ReadRegister(CollReg); // CollReg[7..0] bits are: ValuesAfterColl reserved CollPosNotValid CollPos[4:0]
if (valueOfCollReg & 0x20) { // CollPosNotValid
return STATUS_COLLISION; // Without a valid collision position we cannot continue
}
byte collisionPos = valueOfCollReg & 0x1F; // Values 0-31, 0 means bit 32.
if (collisionPos == 0) {
collisionPos = 32;
}
if (collisionPos <= currentLevelKnownBits) { // No progress - should not happen
return STATUS_INTERNAL_ERROR;
}
// Choose the PICC with the bit set.
currentLevelKnownBits = collisionPos;
count = (currentLevelKnownBits - 1) % 8; // The bit to modify
index = 1 + (currentLevelKnownBits / 8) + (count ? 1 : 0); // First byte is index 0.
buffer[index] |= (1 << count);
}
else if (result != STATUS_OK) {
return result;
}
else { // STATUS_OK
if (currentLevelKnownBits >= 32) { // This was a SELECT.
selectDone = true; // No more anticollision
// We continue below outside the while.
}
else { // This was an ANTICOLLISION.
// We now have all 32 bits of the UID in this Cascade Level
currentLevelKnownBits = 32;
// Run loop again to do the SELECT.
}
}
} // End of while (!selectDone)
// We do not check the CBB - it was constructed by us above.
// Copy the found UID bytes from buffer[] to uid->uidByte[]
index = (buffer[2] == PICC_CMD_CT) ? 3 : 2; // source index in buffer[]
bytesToCopy = (buffer[2] == PICC_CMD_CT) ? 3 : 4;
for (count = 0; count < bytesToCopy; count++) {
uid->uidByte[uidIndex + count] = buffer[index++];
}
// Check response SAK (Select Acknowledge)
if (responseLength != 3 || txLastBits != 0) { // SAK must be exactly 24 bits (1 byte + CRC_A).
return STATUS_ERROR;
}
// Verify CRC_A - do our own calculation and store the control in buffer[2..3] - those bytes are not needed anymore.
result = PCD_CalculateCRC(responseBuffer, 1, &buffer[2]);
if (result != STATUS_OK) {
return result;
}
if ((buffer[2] != responseBuffer[1]) || (buffer[3] != responseBuffer[2])) {
return STATUS_CRC_WRONG;
}
if (responseBuffer[0] & 0x04) { // Cascade bit set - UID not complete yes
cascadeLevel++;
}
else {
uidComplete = true;
uid->sak = responseBuffer[0];
}
} // End of while (!uidComplete)
// Set correct uid->size
uid->size = 3 * cascadeLevel + 1;
return STATUS_OK;
} // End PICC_Select()
/**
* Instructs a PICC in state ACTIVE(*) to go to state HALT.
*
* @return STATUS_OK on success, STATUS_??? otherwise.
*/
MFRC522::StatusCode MFRC522::PICC_HaltA() {
MFRC522::StatusCode result;
byte buffer[4];
// Build command buffer
buffer[0] = PICC_CMD_HLTA;
buffer[1] = 0;
// Calculate CRC_A
result = PCD_CalculateCRC(buffer, 2, &buffer[2]);
if (result != STATUS_OK) {
return result;
}
// Send the command.
// The standard says:
// If the PICC responds with any modulation during a period of 1 ms after the end of the frame containing the
// HLTA command, this response shall be interpreted as 'not acknowledge'.
// We interpret that this way: Only STATUS_TIMEOUT is a success.
result = PCD_TransceiveData(buffer, sizeof(buffer), NULL, 0);
if (result == STATUS_TIMEOUT) {
return STATUS_OK;
}
if (result == STATUS_OK) { // That is ironically NOT ok in this case ;-)
return STATUS_ERROR;
}
return result;
} // End PICC_HaltA()
/////////////////////////////////////////////////////////////////////////////////////
// Functions for communicating with MIFARE PICCs
/////////////////////////////////////////////////////////////////////////////////////
/**
* Executes the MFRC522 MFAuthent command.
* This command manages MIFARE authentication to enable a secure communication to any MIFARE Mini, MIFARE 1K and MIFARE 4K card.
* The authentication is described in the MFRC522 datasheet section 10.3.1.9 and http://www.nxp.com/documents/data_sheet/MF1S503x.pdf section 10.1.
* For use with MIFARE Classic PICCs.
* The PICC must be selected - ie in state ACTIVE(*) - before calling this function.
* Remember to call PCD_StopCrypto1() after communicating with the authenticated PICC - otherwise no new communications can start.
*
* All keys are set to FFFFFFFFFFFFh at chip delivery.
*
* @return STATUS_OK on success, STATUS_??? otherwise. Probably STATUS_TIMEOUT if you supply the wrong key.
*/
MFRC522::StatusCode MFRC522::PCD_Authenticate(byte command, ///< PICC_CMD_MF_AUTH_KEY_A or PICC_CMD_MF_AUTH_KEY_B
byte blockAddr, ///< The block number. See numbering in the comments in the .h file.
MIFARE_Key *key, ///< Pointer to the Crypteo1 key to use (6 bytes)
Uid *uid ///< Pointer to Uid struct. The first 4 bytes of the UID is used.
) {
byte waitIRq = 0x10; // IdleIRq
// Build command buffer
byte sendData[12];
sendData[0] = command;
sendData[1] = blockAddr;
for (byte i = 0; i < MF_KEY_SIZE; i++) { // 6 key bytes
sendData[2+i] = key->keyByte[i];
}
// Use the last uid bytes as specified in http://cache.nxp.com/documents/application_note/AN10927.pdf
// section 3.2.5 "MIFARE Classic Authentication".
// The only missed case is the MF1Sxxxx shortcut activation,
// but it requires cascade tag (CT) byte, that is not part of uid.
for (byte i = 0; i < 4; i++) { // The last 4 bytes of the UID
sendData[8+i] = uid->uidByte[i+uid->size-4];
}
// Start the authentication.
return PCD_CommunicateWithPICC(PCD_MFAuthent, waitIRq, &sendData[0], sizeof(sendData));
} // End PCD_Authenticate()
/**
* Used to exit the PCD from its authenticated state.
* Remember to call this function after communicating with an authenticated PICC - otherwise no new communications can start.
*/
void MFRC522::PCD_StopCrypto1() {
// Clear MFCrypto1On bit
PCD_ClearRegisterBitMask(Status2Reg, 0x08); // Status2Reg[7..0] bits are: TempSensClear I2CForceHS reserved reserved MFCrypto1On ModemState[2:0]
} // End PCD_StopCrypto1()
/**
* Reads 16 bytes (+ 2 bytes CRC_A) from the active PICC.
*
* For MIFARE Classic the sector containing the block must be authenticated before calling this function.
*
* For MIFARE Ultralight only addresses 00h to 0Fh are decoded.
* The MF0ICU1 returns a NAK for higher addresses.
* The MF0ICU1 responds to the READ command by sending 16 bytes starting from the page address defined by the command argument.
* For example; if blockAddr is 03h then pages 03h, 04h, 05h, 06h are returned.
* A roll-back is implemented: If blockAddr is 0Eh, then the contents of pages 0Eh, 0Fh, 00h and 01h are returned.
*
* The buffer must be at least 18 bytes because a CRC_A is also returned.
* Checks the CRC_A before returning STATUS_OK.
*
* @return STATUS_OK on success, STATUS_??? otherwise.
*/
MFRC522::StatusCode MFRC522::MIFARE_Read( byte blockAddr, ///< MIFARE Classic: The block (0-0xff) number. MIFARE Ultralight: The first page to return data from.
byte *buffer, ///< The buffer to store the data in
byte *bufferSize ///< Buffer size, at least 18 bytes. Also number of bytes returned if STATUS_OK.
) {
MFRC522::StatusCode result;
// Sanity check
if (buffer == NULL || *bufferSize < 18) {
return STATUS_NO_ROOM;
}
// Build command buffer
buffer[0] = PICC_CMD_MF_READ;
buffer[1] = blockAddr;
// Calculate CRC_A
result = PCD_CalculateCRC(buffer, 2, &buffer[2]);
if (result != STATUS_OK) {
return result;
}
// Transmit the buffer and receive the response, validate CRC_A.
return PCD_TransceiveData(buffer, 4, buffer, bufferSize, NULL, 0, true);
} // End MIFARE_Read()
/**
* Writes 16 bytes to the active PICC.
*
* For MIFARE Classic the sector containing the block must be authenticated before calling this function.
*
* For MIFARE Ultralight the operation is called "COMPATIBILITY WRITE".
* Even though 16 bytes are transferred to the Ultralight PICC, only the least significant 4 bytes (bytes 0 to 3)
* are written to the specified address. It is recommended to set the remaining bytes 04h to 0Fh to all logic 0.
* *
* @return STATUS_OK on success, STATUS_??? otherwise.
*/
MFRC522::StatusCode MFRC522::MIFARE_Write( byte blockAddr, ///< MIFARE Classic: The block (0-0xff) number. MIFARE Ultralight: The page (2-15) to write to.
byte *buffer, ///< The 16 bytes to write to the PICC
byte bufferSize ///< Buffer size, must be at least 16 bytes. Exactly 16 bytes are written.
) {
MFRC522::StatusCode result;
// Sanity check
if (buffer == NULL || bufferSize < 16) {
return STATUS_INVALID;
}
// Mifare Classic protocol requires two communications to perform a write.
// Step 1: Tell the PICC we want to write to block blockAddr.
byte cmdBuffer[2];
cmdBuffer[0] = PICC_CMD_MF_WRITE;
cmdBuffer[1] = blockAddr;
result = PCD_MIFARE_Transceive(cmdBuffer, 2); // Adds CRC_A and checks that the response is MF_ACK.
if (result != STATUS_OK) {
return result;
}
// Step 2: Transfer the data
result = PCD_MIFARE_Transceive(buffer, bufferSize); // Adds CRC_A and checks that the response is MF_ACK.
if (result != STATUS_OK) {
return result;
}
return STATUS_OK;
} // End MIFARE_Write()
/**
* Writes a 4 byte page to the active MIFARE Ultralight PICC.
*
* @return STATUS_OK on success, STATUS_??? otherwise.
*/
MFRC522::StatusCode MFRC522::MIFARE_Ultralight_Write( byte page, ///< The page (2-15) to write to.
byte *buffer, ///< The 4 bytes to write to the PICC
byte bufferSize ///< Buffer size, must be at least 4 bytes. Exactly 4 bytes are written.
) {
MFRC522::StatusCode result;
// Sanity check
if (buffer == NULL || bufferSize < 4) {
return STATUS_INVALID;
}
// Build commmand buffer
byte cmdBuffer[6];
cmdBuffer[0] = PICC_CMD_UL_WRITE;
cmdBuffer[1] = page;
memcpy(&cmdBuffer[2], buffer, 4);
// Perform the write
result = PCD_MIFARE_Transceive(cmdBuffer, 6); // Adds CRC_A and checks that the response is MF_ACK.
if (result != STATUS_OK) {
return result;
}
return STATUS_OK;
} // End MIFARE_Ultralight_Write()
/**
* MIFARE Decrement subtracts the delta from the value of the addressed block, and stores the result in a volatile memory.
* For MIFARE Classic only. The sector containing the block must be authenticated before calling this function.
* Only for blocks in "value block" mode, ie with access bits [C1 C2 C3] = [110] or [001].
* Use MIFARE_Transfer() to store the result in a block.
*
* @return STATUS_OK on success, STATUS_??? otherwise.
*/
MFRC522::StatusCode MFRC522::MIFARE_Decrement( byte blockAddr, ///< The block (0-0xff) number.
long delta ///< This number is subtracted from the value of block blockAddr.
) {
return MIFARE_TwoStepHelper(PICC_CMD_MF_DECREMENT, blockAddr, delta);
} // End MIFARE_Decrement()
/**
* MIFARE Increment adds the delta to the value of the addressed block, and stores the result in a volatile memory.
* For MIFARE Classic only. The sector containing the block must be authenticated before calling this function.
* Only for blocks in "value block" mode, ie with access bits [C1 C2 C3] = [110] or [001].
* Use MIFARE_Transfer() to store the result in a block.
*
* @return STATUS_OK on success, STATUS_??? otherwise.
*/
MFRC522::StatusCode MFRC522::MIFARE_Increment( byte blockAddr, ///< The block (0-0xff) number.
long delta ///< This number is added to the value of block blockAddr.
) {
return MIFARE_TwoStepHelper(PICC_CMD_MF_INCREMENT, blockAddr, delta);
} // End MIFARE_Increment()
/**
* MIFARE Restore copies the value of the addressed block into a volatile memory.
* For MIFARE Classic only. The sector containing the block must be authenticated before calling this function.
* Only for blocks in "value block" mode, ie with access bits [C1 C2 C3] = [110] or [001].
* Use MIFARE_Transfer() to store the result in a block.
*
* @return STATUS_OK on success, STATUS_??? otherwise.
*/
MFRC522::StatusCode MFRC522::MIFARE_Restore( byte blockAddr ///< The block (0-0xff) number.
) {
// The datasheet describes Restore as a two step operation, but does not explain what data to transfer in step 2.
// Doing only a single step does not work, so I chose to transfer 0L in step two.
return MIFARE_TwoStepHelper(PICC_CMD_MF_RESTORE, blockAddr, 0L);
} // End MIFARE_Restore()
/**
* Helper function for the two-step MIFARE Classic protocol operations Decrement, Increment and Restore.
*
* @return STATUS_OK on success, STATUS_??? otherwise.
*/
MFRC522::StatusCode MFRC522::MIFARE_TwoStepHelper( byte command, ///< The command to use
byte blockAddr, ///< The block (0-0xff) number.
long data ///< The data to transfer in step 2
) {
MFRC522::StatusCode result;
byte cmdBuffer[2]; // We only need room for 2 bytes.
// Step 1: Tell the PICC the command and block address
cmdBuffer[0] = command;
cmdBuffer[1] = blockAddr;
result = PCD_MIFARE_Transceive( cmdBuffer, 2); // Adds CRC_A and checks that the response is MF_ACK.
if (result != STATUS_OK) {
return result;
}
// Step 2: Transfer the data
result = PCD_MIFARE_Transceive( (byte *)&data, 4, true); // Adds CRC_A and accept timeout as success.
if (result != STATUS_OK) {
return result;
}
return STATUS_OK;
} // End MIFARE_TwoStepHelper()
/**
* MIFARE Transfer writes the value stored in the volatile memory into one MIFARE Classic block.
* For MIFARE Classic only. The sector containing the block must be authenticated before calling this function.
* Only for blocks in "value block" mode, ie with access bits [C1 C2 C3] = [110] or [001].
*
* @return STATUS_OK on success, STATUS_??? otherwise.
*/
MFRC522::StatusCode MFRC522::MIFARE_Transfer( byte blockAddr ///< The block (0-0xff) number.
) {
MFRC522::StatusCode result;
byte cmdBuffer[2]; // We only need room for 2 bytes.
// Tell the PICC we want to transfer the result into block blockAddr.
cmdBuffer[0] = PICC_CMD_MF_TRANSFER;
cmdBuffer[1] = blockAddr;
result = PCD_MIFARE_Transceive( cmdBuffer, 2); // Adds CRC_A and checks that the response is MF_ACK.
if (result != STATUS_OK) {
return result;
}
return STATUS_OK;
} // End MIFARE_Transfer()
/**
* Helper routine to read the current value from a Value Block.
*
* Only for MIFARE Classic and only for blocks in "value block" mode, that
* is: with access bits [C1 C2 C3] = [110] or [001]. The sector containing
* the block must be authenticated before calling this function.
*
* @param[in] blockAddr The block (0x00-0xff) number.
* @param[out] value Current value of the Value Block.
* @return STATUS_OK on success, STATUS_??? otherwise.
*/
MFRC522::StatusCode MFRC522::MIFARE_GetValue(byte blockAddr, long *value) {
MFRC522::StatusCode status;
byte buffer[18];
byte size = sizeof(buffer);
// Read the block
status = MIFARE_Read(blockAddr, buffer, &size);
if (status == STATUS_OK) {
// Extract the value
*value = (long(buffer[3])<<24) | (long(buffer[2])<<16) | (long(buffer[1])<<8) | long(buffer[0]);
}
return status;
} // End MIFARE_GetValue()
/**
* Helper routine to write a specific value into a Value Block.
*
* Only for MIFARE Classic and only for blocks in "value block" mode, that
* is: with access bits [C1 C2 C3] = [110] or [001]. The sector containing
* the block must be authenticated before calling this function.
*
* @param[in] blockAddr The block (0x00-0xff) number.
* @param[in] value New value of the Value Block.
* @return STATUS_OK on success, STATUS_??? otherwise.
*/
MFRC522::StatusCode MFRC522::MIFARE_SetValue(byte blockAddr, long value) {
byte buffer[18];
// Translate the long into 4 bytes; repeated 2x in value block
buffer[0] = buffer[ 8] = (value & 0xFF);
buffer[1] = buffer[ 9] = (value & 0xFF00) >> 8;
buffer[2] = buffer[10] = (value & 0xFF0000) >> 16;
buffer[3] = buffer[11] = (value & 0xFF000000) >> 24;
// Inverse 4 bytes also found in value block
buffer[4] = ~buffer[0];
buffer[5] = ~buffer[1];
buffer[6] = ~buffer[2];
buffer[7] = ~buffer[3];
// Address 2x with inverse address 2x
buffer[12] = buffer[14] = blockAddr;
buffer[13] = buffer[15] = ~blockAddr;
// Write the whole data block
return MIFARE_Write(blockAddr, buffer, 16);
} // End MIFARE_SetValue()
/**
* Authenticate with a NTAG216.
*
* Only for NTAG216. First implemented by Gargantuanman.
*
* @param[in] passWord password.
* @param[in] pACK result success???.
* @return STATUS_OK on success, STATUS_??? otherwise.
*/
MFRC522::StatusCode MFRC522::PCD_NTAG216_AUTH(byte* passWord, byte pACK[]) //Authenticate with 32bit password
{
MFRC522::StatusCode result;
byte cmdBuffer[18]; // We need room for 16 bytes data and 2 bytes CRC_A.
cmdBuffer[0] = 0x1B; //Comando de autentificacion
for (byte i = 0; i<4; i++)
cmdBuffer[i+1] = passWord[i];
result = PCD_CalculateCRC(cmdBuffer, 5, &cmdBuffer[5]);
if (result!=STATUS_OK) {
return result;
}
// Transceive the data, store the reply in cmdBuffer[]
byte waitIRq = 0x30; // RxIRq and IdleIRq
byte cmdBufferSize = sizeof(cmdBuffer);
byte validBits = 0;
byte rxlength = 5;
result = PCD_CommunicateWithPICC(PCD_Transceive, waitIRq, cmdBuffer, 7, cmdBuffer, &rxlength, &validBits);
pACK[0] = cmdBuffer[0];
pACK[1] = cmdBuffer[1];
if (result!=STATUS_OK) {
return result;
}
return STATUS_OK;
} // End PCD_NTAG216_AUTH()
/////////////////////////////////////////////////////////////////////////////////////
// Support functions
/////////////////////////////////////////////////////////////////////////////////////
/**
* Wrapper for MIFARE protocol communication.
* Adds CRC_A, executes the Transceive command and checks that the response is MF_ACK or a timeout.
*
* @return STATUS_OK on success, STATUS_??? otherwise.
*/
MFRC522::StatusCode MFRC522::PCD_MIFARE_Transceive( byte *sendData, ///< Pointer to the data to transfer to the FIFO. Do NOT include the CRC_A.
byte sendLen, ///< Number of bytes in sendData.
bool acceptTimeout ///< True => A timeout is also success
) {
MFRC522::StatusCode result;
byte cmdBuffer[18]; // We need room for 16 bytes data and 2 bytes CRC_A.
// Sanity check
if (sendData == NULL || sendLen > 16) {
return STATUS_INVALID;
}
// Copy sendData[] to cmdBuffer[] and add CRC_A
memcpy(cmdBuffer, sendData, sendLen);
result = PCD_CalculateCRC(cmdBuffer, sendLen, &cmdBuffer[sendLen]);
if (result != STATUS_OK) {
return result;
}
sendLen += 2;
// Transceive the data, store the reply in cmdBuffer[]
byte waitIRq = 0x30; // RxIRq and IdleIRq
byte cmdBufferSize = sizeof(cmdBuffer);
byte validBits = 0;
result = PCD_CommunicateWithPICC(PCD_Transceive, waitIRq, cmdBuffer, sendLen, cmdBuffer, &cmdBufferSize, &validBits);
if (acceptTimeout && result == STATUS_TIMEOUT) {
return STATUS_OK;
}
if (result != STATUS_OK) {
return result;
}
// The PICC must reply with a 4 bit ACK
if (cmdBufferSize != 1 || validBits != 4) {
return STATUS_ERROR;
}
if (cmdBuffer[0] != MF_ACK) {
return STATUS_MIFARE_NACK;
}
return STATUS_OK;
} // End PCD_MIFARE_Transceive()
/**
* Returns a __FlashStringHelper pointer to a status code name.
*
* @return const __FlashStringHelper *
*/
const __FlashStringHelper *MFRC522::GetStatusCodeName(MFRC522::StatusCode code ///< One of the StatusCode enums.
) {
switch (code) {
case STATUS_OK: return F("Success.");
case STATUS_ERROR: return F("Error in communication.");
case STATUS_COLLISION: return F("Collission detected.");
case STATUS_TIMEOUT: return F("Timeout in communication.");
case STATUS_NO_ROOM: return F("A buffer is not big enough.");
case STATUS_INTERNAL_ERROR: return F("Internal error in the code. Should not happen.");
case STATUS_INVALID: return F("Invalid argument.");
case STATUS_CRC_WRONG: return F("The CRC_A does not match.");
case STATUS_MIFARE_NACK: return F("A MIFARE PICC responded with NAK.");
default: return F("Unknown error");
}
} // End GetStatusCodeName()
/**
* Translates the SAK (Select Acknowledge) to a PICC type.
*
* @return PICC_Type
*/
MFRC522::PICC_Type MFRC522::PICC_GetType(byte sak ///< The SAK byte returned from PICC_Select().
) {
// http://www.nxp.com/documents/application_note/AN10833.pdf
// 3.2 Coding of Select Acknowledge (SAK)
// ignore 8-bit (iso14443 starts with LSBit = bit 1)
// fixes wrong type for manufacturer Infineon (http://nfc-tools.org/index.php?title=ISO14443A)
sak &= 0x7F;
switch (sak) {
case 0x04: return PICC_TYPE_NOT_COMPLETE; // UID not complete
case 0x09: return PICC_TYPE_MIFARE_MINI;
case 0x08: return PICC_TYPE_MIFARE_1K;
case 0x18: return PICC_TYPE_MIFARE_4K;
case 0x00: return PICC_TYPE_MIFARE_UL;
case 0x10:
case 0x11: return PICC_TYPE_MIFARE_PLUS;
case 0x01: return PICC_TYPE_TNP3XXX;
case 0x20: return PICC_TYPE_ISO_14443_4;
case 0x40: return PICC_TYPE_ISO_18092;
default: return PICC_TYPE_UNKNOWN;
}
} // End PICC_GetType()
/**
* Returns a __FlashStringHelper pointer to the PICC type name.
*
* @return const __FlashStringHelper *
*/
const __FlashStringHelper *MFRC522::PICC_GetTypeName(PICC_Type piccType ///< One of the PICC_Type enums.
) {
switch (piccType) {
case PICC_TYPE_ISO_14443_4: return F("PICC compliant with ISO/IEC 14443-4");
case PICC_TYPE_ISO_18092: return F("PICC compliant with ISO/IEC 18092 (NFC)");
case PICC_TYPE_MIFARE_MINI: return F("MIFARE Mini, 320 bytes");
case PICC_TYPE_MIFARE_1K: return F("MIFARE 1KB");
case PICC_TYPE_MIFARE_4K: return F("MIFARE 4KB");
case PICC_TYPE_MIFARE_UL: return F("MIFARE Ultralight or Ultralight C");
case PICC_TYPE_MIFARE_PLUS: return F("MIFARE Plus");
case PICC_TYPE_TNP3XXX: return F("MIFARE TNP3XXX");
case PICC_TYPE_NOT_COMPLETE: return F("SAK indicates UID is not complete.");
case PICC_TYPE_UNKNOWN:
default: return F("Unknown type");
}
} // End PICC_GetTypeName()
/**
* Dumps debug info about the connected PCD to Serial.
* Shows all known firmware versions
*/
void MFRC522::PCD_DumpVersionToSerial() {
// Get the MFRC522 firmware version
byte v = PCD_ReadRegister(VersionReg);
Serial.print(F("Firmware Version: 0x"));
Serial.print(v, HEX);
// Lookup which version
switch(v) {
case 0x88: Serial.println(F(" = (clone)")); break;
case 0x90: Serial.println(F(" = v0.0")); break;
case 0x91: Serial.println(F(" = v1.0")); break;
case 0x92: Serial.println(F(" = v2.0")); break;
default: Serial.println(F(" = (unknown)"));
}
// When 0x00 or 0xFF is returned, communication probably failed
if ((v == 0x00) || (v == 0xFF))
Serial.println(F("WARNING: Communication failure, is the MFRC522 properly connected?"));
} // End PCD_DumpVersionToSerial()
/**
* Dumps debug info about the selected PICC to Serial.
* On success the PICC is halted after dumping the data.
* For MIFARE Classic the factory default key of 0xFFFFFFFFFFFF is tried.
*/
void MFRC522::PICC_DumpToSerial(Uid *uid ///< Pointer to Uid struct returned from a successful PICC_Select().
) {
MIFARE_Key key;
// Dump UID, SAK and Type
PICC_DumpDetailsToSerial(uid);
// Dump contents
PICC_Type piccType = PICC_GetType(uid->sak);
switch (piccType) {
case PICC_TYPE_MIFARE_MINI:
case PICC_TYPE_MIFARE_1K:
case PICC_TYPE_MIFARE_4K:
// All keys are set to FFFFFFFFFFFFh at chip delivery from the factory.
for (byte i = 0; i < 6; i++) {
key.keyByte[i] = 0xFF;
}
PICC_DumpMifareClassicToSerial(uid, piccType, &key);
break;
case PICC_TYPE_MIFARE_UL:
PICC_DumpMifareUltralightToSerial();
break;
case PICC_TYPE_ISO_14443_4:
case PICC_TYPE_ISO_18092:
case PICC_TYPE_MIFARE_PLUS:
case PICC_TYPE_TNP3XXX:
Serial.println(F("Dumping memory contents not implemented for that PICC type."));
break;
case PICC_TYPE_UNKNOWN:
case PICC_TYPE_NOT_COMPLETE:
default:
break; // No memory dump here
}
Serial.println();
PICC_HaltA(); // Already done if it was a MIFARE Classic PICC.
} // End PICC_DumpToSerial()
/**
* Dumps card info (UID,SAK,Type) about the selected PICC to Serial.
*/
void MFRC522::PICC_DumpDetailsToSerial(Uid *uid ///< Pointer to Uid struct returned from a successful PICC_Select().
) {
// UID
Serial.print(F("Card UID:"));
for (byte i = 0; i < uid->size; i++) {
if(uid->uidByte[i] < 0x10)
Serial.print(F(" 0"));
else
Serial.print(F(" "));
Serial.print(uid->uidByte[i], HEX);
}
Serial.println();
// SAK
Serial.print(F("Card SAK: "));
if(uid->sak < 0x10)
Serial.print(F("0"));
Serial.println(uid->sak, HEX);
// (suggested) PICC type
PICC_Type piccType = PICC_GetType(uid->sak);
Serial.print(F("PICC type: "));
Serial.println(PICC_GetTypeName(piccType));
} // End PICC_DumpDetailsToSerial()
/**
* Dumps memory contents of a MIFARE Classic PICC.
* On success the PICC is halted after dumping the data.
*/
void MFRC522::PICC_DumpMifareClassicToSerial( Uid *uid, ///< Pointer to Uid struct returned from a successful PICC_Select().
PICC_Type piccType, ///< One of the PICC_Type enums.
MIFARE_Key *key ///< Key A used for all sectors.
) {
byte no_of_sectors = 0;
switch (piccType) {
case PICC_TYPE_MIFARE_MINI:
// Has 5 sectors * 4 blocks/sector * 16 bytes/block = 320 bytes.
no_of_sectors = 5;
break;
case PICC_TYPE_MIFARE_1K:
// Has 16 sectors * 4 blocks/sector * 16 bytes/block = 1024 bytes.
no_of_sectors = 16;
break;
case PICC_TYPE_MIFARE_4K:
// Has (32 sectors * 4 blocks/sector + 8 sectors * 16 blocks/sector) * 16 bytes/block = 4096 bytes.
no_of_sectors = 40;
break;
default: // Should not happen. Ignore.
break;
}
// Dump sectors, highest address first.
if (no_of_sectors) {
Serial.println(F("Sector Block 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 AccessBits"));
for (int8_t i = no_of_sectors - 1; i >= 0; i--) {
PICC_DumpMifareClassicSectorToSerial(uid, key, i);
}
}
PICC_HaltA(); // Halt the PICC before stopping the encrypted session.
PCD_StopCrypto1();
} // End PICC_DumpMifareClassicToSerial()
/**
* Dumps memory contents of a sector of a MIFARE Classic PICC.
* Uses PCD_Authenticate(), MIFARE_Read() and PCD_StopCrypto1.
* Always uses PICC_CMD_MF_AUTH_KEY_A because only Key A can always read the sector trailer access bits.
*/
void MFRC522::PICC_DumpMifareClassicSectorToSerial(Uid *uid, ///< Pointer to Uid struct returned from a successful PICC_Select().
MIFARE_Key *key, ///< Key A for the sector.
byte sector ///< The sector to dump, 0..39.
) {
MFRC522::StatusCode status;
byte firstBlock; // Address of lowest address to dump actually last block dumped)
byte no_of_blocks; // Number of blocks in sector
bool isSectorTrailer; // Set to true while handling the "last" (ie highest address) in the sector.
// The access bits are stored in a peculiar fashion.
// There are four groups:
// g[3] Access bits for the sector trailer, block 3 (for sectors 0-31) or block 15 (for sectors 32-39)
// g[2] Access bits for block 2 (for sectors 0-31) or blocks 10-14 (for sectors 32-39)
// g[1] Access bits for block 1 (for sectors 0-31) or blocks 5-9 (for sectors 32-39)
// g[0] Access bits for block 0 (for sectors 0-31) or blocks 0-4 (for sectors 32-39)
// Each group has access bits [C1 C2 C3]. In this code C1 is MSB and C3 is LSB.
// The four CX bits are stored together in a nible cx and an inverted nible cx_.
byte c1, c2, c3; // Nibbles
byte c1_, c2_, c3_; // Inverted nibbles
bool invertedError; // True if one of the inverted nibbles did not match
byte g[4]; // Access bits for each of the four groups.
byte group; // 0-3 - active group for access bits
bool firstInGroup; // True for the first block dumped in the group
// Determine position and size of sector.
if (sector < 32) { // Sectors 0..31 has 4 blocks each
no_of_blocks = 4;
firstBlock = sector * no_of_blocks;
}
else if (sector < 40) { // Sectors 32-39 has 16 blocks each
no_of_blocks = 16;
firstBlock = 128 + (sector - 32) * no_of_blocks;
}
else { // Illegal input, no MIFARE Classic PICC has more than 40 sectors.
return;
}
// Dump blocks, highest address first.
byte byteCount;
byte buffer[18];
byte blockAddr;
isSectorTrailer = true;
for (int8_t blockOffset = no_of_blocks - 1; blockOffset >= 0; blockOffset--) {
blockAddr = firstBlock + blockOffset;
// Sector number - only on first line
if (isSectorTrailer) {
if(sector < 10)
Serial.print(F(" ")); // Pad with spaces
else
Serial.print(F(" ")); // Pad with spaces
Serial.print(sector);
Serial.print(F(" "));
}
else {
Serial.print(F(" "));
}
// Block number
if(blockAddr < 10)
Serial.print(F(" ")); // Pad with spaces
else {
if(blockAddr < 100)
Serial.print(F(" ")); // Pad with spaces
else
Serial.print(F(" ")); // Pad with spaces
}
Serial.print(blockAddr);
Serial.print(F(" "));
// Establish encrypted communications before reading the first block
if (isSectorTrailer) {
status = PCD_Authenticate(PICC_CMD_MF_AUTH_KEY_A, firstBlock, key, uid);
if (status != STATUS_OK) {
Serial.print(F("PCD_Authenticate() failed: "));
Serial.println(GetStatusCodeName(status));
return;
}
}
// Read block
byteCount = sizeof(buffer);
status = MIFARE_Read(blockAddr, buffer, &byteCount);
if (status != STATUS_OK) {
Serial.print(F("MIFARE_Read() failed: "));
Serial.println(GetStatusCodeName(status));
continue;
}
// Dump data
for (byte index = 0; index < 16; index++) {
if(buffer[index] < 0x10)
Serial.print(F(" 0"));
else
Serial.print(F(" "));
Serial.print(buffer[index], HEX);
if ((index % 4) == 3) {
Serial.print(F(" "));
}
}
// Parse sector trailer data
if (isSectorTrailer) {
c1 = buffer[7] >> 4;
c2 = buffer[8] & 0xF;
c3 = buffer[8] >> 4;
c1_ = buffer[6] & 0xF;
c2_ = buffer[6] >> 4;
c3_ = buffer[7] & 0xF;
invertedError = (c1 != (~c1_ & 0xF)) || (c2 != (~c2_ & 0xF)) || (c3 != (~c3_ & 0xF));
g[0] = ((c1 & 1) << 2) | ((c2 & 1) << 1) | ((c3 & 1) << 0);
g[1] = ((c1 & 2) << 1) | ((c2 & 2) << 0) | ((c3 & 2) >> 1);
g[2] = ((c1 & 4) << 0) | ((c2 & 4) >> 1) | ((c3 & 4) >> 2);
g[3] = ((c1 & 8) >> 1) | ((c2 & 8) >> 2) | ((c3 & 8) >> 3);
isSectorTrailer = false;
}
// Which access group is this block in?
if (no_of_blocks == 4) {
group = blockOffset;
firstInGroup = true;
}
else {
group = blockOffset / 5;
firstInGroup = (group == 3) || (group != (blockOffset + 1) / 5);
}
if (firstInGroup) {
// Print access bits
Serial.print(F(" [ "));
Serial.print((g[group] >> 2) & 1, DEC); Serial.print(F(" "));
Serial.print((g[group] >> 1) & 1, DEC); Serial.print(F(" "));
Serial.print((g[group] >> 0) & 1, DEC);
Serial.print(F(" ] "));
if (invertedError) {
Serial.print(F(" Inverted access bits did not match! "));
}
}
if (group != 3 && (g[group] == 1 || g[group] == 6)) { // Not a sector trailer, a value block
long value = (long(buffer[3])<<24) | (long(buffer[2])<<16) | (long(buffer[1])<<8) | long(buffer[0]);
Serial.print(F(" Value=0x")); Serial.print(value, HEX);
Serial.print(F(" Adr=0x")); Serial.print(buffer[12], HEX);
}
Serial.println();
}
return;
} // End PICC_DumpMifareClassicSectorToSerial()
/**
* Dumps memory contents of a MIFARE Ultralight PICC.
*/
void MFRC522::PICC_DumpMifareUltralightToSerial() {
MFRC522::StatusCode status;
byte byteCount;
byte buffer[18];
byte i;
Serial.println(F("Page 0 1 2 3"));
// Try the mpages of the original Ultralight. Ultralight C has more pages.
for (byte page = 0; page < 16; page +=4) { // Read returns data for 4 pages at a time.
// Read pages
byteCount = sizeof(buffer);
status = MIFARE_Read(page, buffer, &byteCount);
if (status != STATUS_OK) {
Serial.print(F("MIFARE_Read() failed: "));
Serial.println(GetStatusCodeName(status));
break;
}
// Dump data
for (byte offset = 0; offset < 4; offset++) {
i = page + offset;
if(i < 10)
Serial.print(F(" ")); // Pad with spaces
else
Serial.print(F(" ")); // Pad with spaces
Serial.print(i);
Serial.print(F(" "));
for (byte index = 0; index < 4; index++) {
i = 4 * offset + index;
if(buffer[i] < 0x10)
Serial.print(F(" 0"));
else
Serial.print(F(" "));
Serial.print(buffer[i], HEX);
}
Serial.println();
}
}
} // End PICC_DumpMifareUltralightToSerial()
/**
* Calculates the bit pattern needed for the specified access bits. In the [C1 C2 C3] tuples C1 is MSB (=4) and C3 is LSB (=1).
*/
void MFRC522::MIFARE_SetAccessBits( byte *accessBitBuffer, ///< Pointer to byte 6, 7 and 8 in the sector trailer. Bytes [0..2] will be set.
byte g0, ///< Access bits [C1 C2 C3] for block 0 (for sectors 0-31) or blocks 0-4 (for sectors 32-39)
byte g1, ///< Access bits C1 C2 C3] for block 1 (for sectors 0-31) or blocks 5-9 (for sectors 32-39)
byte g2, ///< Access bits C1 C2 C3] for block 2 (for sectors 0-31) or blocks 10-14 (for sectors 32-39)
byte g3 ///< Access bits C1 C2 C3] for the sector trailer, block 3 (for sectors 0-31) or block 15 (for sectors 32-39)
) {
byte c1 = ((g3 & 4) << 1) | ((g2 & 4) << 0) | ((g1 & 4) >> 1) | ((g0 & 4) >> 2);
byte c2 = ((g3 & 2) << 2) | ((g2 & 2) << 1) | ((g1 & 2) << 0) | ((g0 & 2) >> 1);
byte c3 = ((g3 & 1) << 3) | ((g2 & 1) << 2) | ((g1 & 1) << 1) | ((g0 & 1) << 0);
accessBitBuffer[0] = (~c2 & 0xF) << 4 | (~c1 & 0xF);
accessBitBuffer[1] = c1 << 4 | (~c3 & 0xF);
accessBitBuffer[2] = c3 << 4 | c2;
} // End MIFARE_SetAccessBits()
/**
* Performs the "magic sequence" needed to get Chinese UID changeable
* Mifare cards to allow writing to sector 0, where the card UID is stored.
*
* Note that you do not need to have selected the card through REQA or WUPA,
* this sequence works immediately when the card is in the reader vicinity.
* This means you can use this method even on "bricked" cards that your reader does
* not recognise anymore (see MFRC522::MIFARE_UnbrickUidSector).
*
* Of course with non-bricked devices, you're free to select them before calling this function.
*/
bool MFRC522::MIFARE_OpenUidBackdoor(bool logErrors) {
// Magic sequence:
// > 50 00 57 CD (HALT + CRC)
// > 40 (7 bits only)
// < A (4 bits only)
// > 43
// < A (4 bits only)
// Then you can write to sector 0 without authenticating
PICC_HaltA(); // 50 00 57 CD
byte cmd = 0x40;
byte validBits = 7; /* Our command is only 7 bits. After receiving card response,
this will contain amount of valid response bits. */
byte response[32]; // Card's response is written here
byte received;
MFRC522::StatusCode status = PCD_TransceiveData(&cmd, (byte)1, response, &received, &validBits, (byte)0, false); // 40
if(status != STATUS_OK) {
if(logErrors) {
Serial.println(F("Card did not respond to 0x40 after HALT command. Are you sure it is a UID changeable one?"));
Serial.print(F("Error name: "));
Serial.println(GetStatusCodeName(status));
}
return false;
}
if (received != 1 || response[0] != 0x0A) {
if (logErrors) {
Serial.print(F("Got bad response on backdoor 0x40 command: "));
Serial.print(response[0], HEX);
Serial.print(F(" ("));
Serial.print(validBits);
Serial.print(F(" valid bits)\r\n"));
}
return false;
}
cmd = 0x43;
validBits = 8;
status = PCD_TransceiveData(&cmd, (byte)1, response, &received, &validBits, (byte)0, false); // 43
if(status != STATUS_OK) {
if(logErrors) {
Serial.println(F("Error in communication at command 0x43, after successfully executing 0x40"));
Serial.print(F("Error name: "));
Serial.println(GetStatusCodeName(status));
}
return false;
}
if (received != 1 || response[0] != 0x0A) {
if (logErrors) {
Serial.print(F("Got bad response on backdoor 0x43 command: "));
Serial.print(response[0], HEX);
Serial.print(F(" ("));
Serial.print(validBits);
Serial.print(F(" valid bits)\r\n"));
}
return false;
}
// You can now write to sector 0 without authenticating!
return true;
} // End MIFARE_OpenUidBackdoor()
/**
* Reads entire block 0, including all manufacturer data, and overwrites
* that block with the new UID, a freshly calculated BCC, and the original
* manufacturer data.
*
* It assumes a default KEY A of 0xFFFFFFFFFFFF.
* Make sure to have selected the card before this function is called.
*/
bool MFRC522::MIFARE_SetUid(byte *newUid, byte uidSize, bool logErrors) {
// UID + BCC byte can not be larger than 16 together
if (!newUid || !uidSize || uidSize > 15) {
if (logErrors) {
Serial.println(F("New UID buffer empty, size 0, or size > 15 given"));
}
return false;
}
// Authenticate for reading
MIFARE_Key key = {0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF};
MFRC522::StatusCode status = PCD_Authenticate(MFRC522::PICC_CMD_MF_AUTH_KEY_A, (byte)1, &key, &uid);
if (status != STATUS_OK) {
if (status == STATUS_TIMEOUT) {
// We get a read timeout if no card is selected yet, so let's select one
// Wake the card up again if sleeping
// byte atqa_answer[2];
// byte atqa_size = 2;
// PICC_WakeupA(atqa_answer, &atqa_size);
if (!PICC_IsNewCardPresent() || !PICC_ReadCardSerial()) {
Serial.println(F("No card was previously selected, and none are available. Failed to set UID."));
return false;
}
status = PCD_Authenticate(MFRC522::PICC_CMD_MF_AUTH_KEY_A, (byte)1, &key, &uid);
if (status != STATUS_OK) {
// We tried, time to give up
if (logErrors) {
Serial.println(F("Failed to authenticate to card for reading, could not set UID: "));
Serial.println(GetStatusCodeName(status));
}
return false;
}
}
else {
if (logErrors) {
Serial.print(F("PCD_Authenticate() failed: "));
Serial.println(GetStatusCodeName(status));
}
return false;
}
}
// Read block 0
byte block0_buffer[18];
byte byteCount = sizeof(block0_buffer);
status = MIFARE_Read((byte)0, block0_buffer, &byteCount);
if (status != STATUS_OK) {
if (logErrors) {
Serial.print(F("MIFARE_Read() failed: "));
Serial.println(GetStatusCodeName(status));
Serial.println(F("Are you sure your KEY A for sector 0 is 0xFFFFFFFFFFFF?"));
}
return false;
}
// Write new UID to the data we just read, and calculate BCC byte
byte bcc = 0;
for (int i = 0; i < uidSize; i++) {
block0_buffer[i] = newUid[i];
bcc ^= newUid[i];
}
// Write BCC byte to buffer
block0_buffer[uidSize] = bcc;
// Stop encrypted traffic so we can send raw bytes
PCD_StopCrypto1();
// Activate UID backdoor
if (!MIFARE_OpenUidBackdoor(logErrors)) {
if (logErrors) {
Serial.println(F("Activating the UID backdoor failed."));
}
return false;
}
// Write modified block 0 back to card
status = MIFARE_Write((byte)0, block0_buffer, (byte)16);
if (status != STATUS_OK) {
if (logErrors) {
Serial.print(F("MIFARE_Write() failed: "));
Serial.println(GetStatusCodeName(status));
}
return false;
}
// Wake the card up again
byte atqa_answer[2];
byte atqa_size = 2;
PICC_WakeupA(atqa_answer, &atqa_size);
return true;
}
/**
* Resets entire sector 0 to zeroes, so the card can be read again by readers.
*/
bool MFRC522::MIFARE_UnbrickUidSector(bool logErrors) {
MIFARE_OpenUidBackdoor(logErrors);
byte block0_buffer[] = {0x01, 0x02, 0x03, 0x04, 0x04, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00};
// Write modified block 0 back to card
MFRC522::StatusCode status = MIFARE_Write((byte)0, block0_buffer, (byte)16);
if (status != STATUS_OK) {
if (logErrors) {
Serial.print(F("MIFARE_Write() failed: "));
Serial.println(GetStatusCodeName(status));
}
return false;
}
return true;
}
/////////////////////////////////////////////////////////////////////////////////////
// Convenience functions - does not add extra functionality
/////////////////////////////////////////////////////////////////////////////////////
/**
* Returns true if a PICC responds to PICC_CMD_REQA.
* Only "new" cards in state IDLE are invited. Sleeping cards in state HALT are ignored.
*
* @return bool
*/
bool MFRC522::PICC_IsNewCardPresent() {
byte bufferATQA[2];
byte bufferSize = sizeof(bufferATQA);
MFRC522::StatusCode result = PICC_RequestA(bufferATQA, &bufferSize);
return (result == STATUS_OK || result == STATUS_COLLISION);
} // End PICC_IsNewCardPresent()
/**
* Simple wrapper around PICC_Select.
* Returns true if a UID could be read.
* Remember to call PICC_IsNewCardPresent(), PICC_RequestA() or PICC_WakeupA() first.
* The read UID is available in the class variable uid.
*
* @return bool
*/
bool MFRC522::PICC_ReadCardSerial() {
MFRC522::StatusCode result = PICC_Select(&uid);
return (result == STATUS_OK);
} // End