Files
RFID.MFRC522/src/MFRC522Extended.cpp
Rotzbua ede44cc620 move source files
closes #286
2017-03-13 22:31:17 +01:00

1162 lines
34 KiB
C++
Raw Blame History

This file contains ambiguous Unicode characters
This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.
/*
* MFRC522.cpp - Library to use ARDUINO RFID MODULE KIT 13.56 MHZ WITH TAGS SPI W AND R BY COOQROBOT.
* NOTE: Please also check the comments in MFRC522.h - they provide useful hints and background information.
* Released into the public domain.
*/
#include <Arduino.h>
#include "MFRC522.h"
#include "MFRC522Extended.h"
/////////////////////////////////////////////////////////////////////////////////////
// Functions for communicating with PICCs
/////////////////////////////////////////////////////////////////////////////////////
/**
* Transmits SELECT/ANTICOLLISION commands to select a single PICC.
* Before calling this function the PICCs must be placed in the READY(*) state by calling PICC_RequestA() or PICC_WakeupA().
* On success:
* - The chosen PICC is in state ACTIVE(*) and all other PICCs have returned to state IDLE/HALT. (Figure 7 of the ISO/IEC 14443-3 draft.)
* - The UID size and value of the chosen PICC is returned in *uid along with the SAK.
*
* A PICC UID consists of 4, 7 or 10 bytes.
* Only 4 bytes can be specified in a SELECT command, so for the longer UIDs two or three iterations are used:
* UID size Number of UID bytes Cascade levels Example of PICC
* ======== =================== ============== ===============
* single 4 1 MIFARE Classic
* double 7 2 MIFARE Ultralight
* triple 10 3 Not currently in use?
*
* @return STATUS_OK on success, STATUS_??? otherwise.
*/
MFRC522Extended::StatusCode MFRC522Extended::PICC_Select( Uid *uid, ///< Pointer to Uid struct. Normally output, but can also be used to supply a known UID.
byte validBits ///< The number of known UID bits supplied in *uid. Normally 0. If set you must also supply uid->size.
) {
bool uidComplete;
bool selectDone;
bool useCascadeTag;
byte cascadeLevel = 1;
MFRC522::StatusCode result;
byte count;
byte index;
byte uidIndex; // The first index in uid->uidByte[] that is used in the current Cascade Level.
int8_t currentLevelKnownBits; // The number of known UID bits in the current Cascade Level.
byte buffer[9]; // The SELECT/ANTICOLLISION commands uses a 7 byte standard frame + 2 bytes CRC_A
byte bufferUsed; // The number of bytes used in the buffer, ie the number of bytes to transfer to the FIFO.
byte rxAlign; // Used in BitFramingReg. Defines the bit position for the first bit received.
byte txLastBits; // Used in BitFramingReg. The number of valid bits in the last transmitted byte.
byte *responseBuffer;
byte responseLength;
// Description of buffer structure:
// Byte 0: SEL Indicates the Cascade Level: PICC_CMD_SEL_CL1, PICC_CMD_SEL_CL2 or PICC_CMD_SEL_CL3
// Byte 1: NVB Number of Valid Bits (in complete command, not just the UID): High nibble: complete bytes, Low nibble: Extra bits.
// Byte 2: UID-data or CT See explanation below. CT means Cascade Tag.
// Byte 3: UID-data
// Byte 4: UID-data
// Byte 5: UID-data
// Byte 6: BCC Block Check Character - XOR of bytes 2-5
// Byte 7: CRC_A
// Byte 8: CRC_A
// The BCC and CRC_A are only transmitted if we know all the UID bits of the current Cascade Level.
//
// Description of bytes 2-5: (Section 6.5.4 of the ISO/IEC 14443-3 draft: UID contents and cascade levels)
// UID size Cascade level Byte2 Byte3 Byte4 Byte5
// ======== ============= ===== ===== ===== =====
// 4 bytes 1 uid0 uid1 uid2 uid3
// 7 bytes 1 CT uid0 uid1 uid2
// 2 uid3 uid4 uid5 uid6
// 10 bytes 1 CT uid0 uid1 uid2
// 2 CT uid3 uid4 uid5
// 3 uid6 uid7 uid8 uid9
// Sanity checks
if (validBits > 80) {
return STATUS_INVALID;
}
// Prepare MFRC522
PCD_ClearRegisterBitMask(CollReg, 0x80); // ValuesAfterColl=1 => Bits received after collision are cleared.
// Repeat Cascade Level loop until we have a complete UID.
uidComplete = false;
while (!uidComplete) {
// Set the Cascade Level in the SEL byte, find out if we need to use the Cascade Tag in byte 2.
switch (cascadeLevel) {
case 1:
buffer[0] = PICC_CMD_SEL_CL1;
uidIndex = 0;
useCascadeTag = validBits && uid->size > 4; // When we know that the UID has more than 4 bytes
break;
case 2:
buffer[0] = PICC_CMD_SEL_CL2;
uidIndex = 3;
useCascadeTag = validBits && uid->size > 7; // When we know that the UID has more than 7 bytes
break;
case 3:
buffer[0] = PICC_CMD_SEL_CL3;
uidIndex = 6;
useCascadeTag = false; // Never used in CL3.
break;
default:
return STATUS_INTERNAL_ERROR;
break;
}
// How many UID bits are known in this Cascade Level?
currentLevelKnownBits = validBits - (8 * uidIndex);
if (currentLevelKnownBits < 0) {
currentLevelKnownBits = 0;
}
// Copy the known bits from uid->uidByte[] to buffer[]
index = 2; // destination index in buffer[]
if (useCascadeTag) {
buffer[index++] = PICC_CMD_CT;
}
byte bytesToCopy = currentLevelKnownBits / 8 + (currentLevelKnownBits % 8 ? 1 : 0); // The number of bytes needed to represent the known bits for this level.
if (bytesToCopy) {
byte maxBytes = useCascadeTag ? 3 : 4; // Max 4 bytes in each Cascade Level. Only 3 left if we use the Cascade Tag
if (bytesToCopy > maxBytes) {
bytesToCopy = maxBytes;
}
for (count = 0; count < bytesToCopy; count++) {
buffer[index++] = uid->uidByte[uidIndex + count];
}
}
// Now that the data has been copied we need to include the 8 bits in CT in currentLevelKnownBits
if (useCascadeTag) {
currentLevelKnownBits += 8;
}
// Repeat anti collision loop until we can transmit all UID bits + BCC and receive a SAK - max 32 iterations.
selectDone = false;
while (!selectDone) {
// Find out how many bits and bytes to send and receive.
if (currentLevelKnownBits >= 32) { // All UID bits in this Cascade Level are known. This is a SELECT.
//Serial.print(F("SELECT: currentLevelKnownBits=")); Serial.println(currentLevelKnownBits, DEC);
buffer[1] = 0x70; // NVB - Number of Valid Bits: Seven whole bytes
// Calculate BCC - Block Check Character
buffer[6] = buffer[2] ^ buffer[3] ^ buffer[4] ^ buffer[5];
// Calculate CRC_A
result = PCD_CalculateCRC(buffer, 7, &buffer[7]);
if (result != STATUS_OK) {
return result;
}
txLastBits = 0; // 0 => All 8 bits are valid.
bufferUsed = 9;
// Store response in the last 3 bytes of buffer (BCC and CRC_A - not needed after tx)
responseBuffer = &buffer[6];
responseLength = 3;
}
else { // This is an ANTICOLLISION.
//Serial.print(F("ANTICOLLISION: currentLevelKnownBits=")); Serial.println(currentLevelKnownBits, DEC);
txLastBits = currentLevelKnownBits % 8;
count = currentLevelKnownBits / 8; // Number of whole bytes in the UID part.
index = 2 + count; // Number of whole bytes: SEL + NVB + UIDs
buffer[1] = (index << 4) + txLastBits; // NVB - Number of Valid Bits
bufferUsed = index + (txLastBits ? 1 : 0);
// Store response in the unused part of buffer
responseBuffer = &buffer[index];
responseLength = sizeof(buffer) - index;
}
// Set bit adjustments
rxAlign = txLastBits; // Having a separate variable is overkill. But it makes the next line easier to read.
PCD_WriteRegister(BitFramingReg, (rxAlign << 4) + txLastBits); // RxAlign = BitFramingReg[6..4]. TxLastBits = BitFramingReg[2..0]
// Transmit the buffer and receive the response.
result = PCD_TransceiveData(buffer, bufferUsed, responseBuffer, &responseLength, &txLastBits, rxAlign);
if (result == STATUS_COLLISION) { // More than one PICC in the field => collision.
byte valueOfCollReg = PCD_ReadRegister(CollReg); // CollReg[7..0] bits are: ValuesAfterColl reserved CollPosNotValid CollPos[4:0]
if (valueOfCollReg & 0x20) { // CollPosNotValid
return STATUS_COLLISION; // Without a valid collision position we cannot continue
}
byte collisionPos = valueOfCollReg & 0x1F; // Values 0-31, 0 means bit 32.
if (collisionPos == 0) {
collisionPos = 32;
}
if (collisionPos <= currentLevelKnownBits) { // No progress - should not happen
return STATUS_INTERNAL_ERROR;
}
// Choose the PICC with the bit set.
currentLevelKnownBits = collisionPos;
count = (currentLevelKnownBits - 1) % 8; // The bit to modify
index = 1 + (currentLevelKnownBits / 8) + (count ? 1 : 0); // First byte is index 0.
buffer[index] |= (1 << count);
}
else if (result != STATUS_OK) {
return result;
}
else { // STATUS_OK
if (currentLevelKnownBits >= 32) { // This was a SELECT.
selectDone = true; // No more anticollision
// We continue below outside the while.
}
else { // This was an ANTICOLLISION.
// We now have all 32 bits of the UID in this Cascade Level
currentLevelKnownBits = 32;
// Run loop again to do the SELECT.
}
}
} // End of while (!selectDone)
// We do not check the CBB - it was constructed by us above.
// Copy the found UID bytes from buffer[] to uid->uidByte[]
index = (buffer[2] == PICC_CMD_CT) ? 3 : 2; // source index in buffer[]
bytesToCopy = (buffer[2] == PICC_CMD_CT) ? 3 : 4;
for (count = 0; count < bytesToCopy; count++) {
uid->uidByte[uidIndex + count] = buffer[index++];
}
// Check response SAK (Select Acknowledge)
if (responseLength != 3 || txLastBits != 0) { // SAK must be exactly 24 bits (1 byte + CRC_A).
return STATUS_ERROR;
}
// Verify CRC_A - do our own calculation and store the control in buffer[2..3] - those bytes are not needed anymore.
result = PCD_CalculateCRC(responseBuffer, 1, &buffer[2]);
if (result != STATUS_OK) {
return result;
}
if ((buffer[2] != responseBuffer[1]) || (buffer[3] != responseBuffer[2])) {
return STATUS_CRC_WRONG;
}
if (responseBuffer[0] & 0x04) { // Cascade bit set - UID not complete yes
cascadeLevel++;
}
else {
uidComplete = true;
uid->sak = responseBuffer[0];
}
} // End of while (!uidComplete)
// Set correct uid->size
uid->size = 3 * cascadeLevel + 1;
// IF SAK bit 6 = 1 then it is ISO/IEC 14443-4 (T=CL)
// A Request ATS command should be sent
// We also check SAK bit 3 is cero, as it stands for UID complete (1 would tell us it is incomplete)
if ((uid->sak & 0x24) == 0x20) {
Ats ats;
result = PICC_RequestATS(&ats);
if (result == STATUS_OK) {
// Check the ATS
if (ats.size > 0)
{
// TA1 has been transmitted?
// PPS must be supported...
if (ats.ta1.transmitted)
{
// TA1
// 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | Description
// ---+---+---+---+---+---+---+---+------------------------------------------
// 0 | - | - | - | 0 | - | - | - | Different D for each direction supported
// 1 | - | - | - | 0 | - | - | - | Only same D for both direction supported
// - | x | x | x | 0 | - | - | - | DS (Send D)
// - | - | - | - | 0 | x | x | x | DR (Receive D)
//
// D to bitrate table
// 3 | 2 | 1 | Value
// ---+---+---+-----------------------------
// 1 | - | - | 848 kBaud is supported
// - | 1 | - | 424 kBaud is supported
// - | - | 1 | 212 kBaud is supported
// 0 | 0 | 0 | Only 106 kBaud is supported
//
// Note: 106 kBaud is always supported
//
// I have almost constant timeouts when changing speeds :(
TagBitRates ds = BITRATE_106KBITS;
TagBitRates dr = BITRATE_106KBITS;
//// Not working at 848 or 424
//if (ats.ta1.ds & 0x04)
//{
// ds = BITRATE_848KBITS;
//}
//else if (ats.ta1.ds & 0x02)
//{
// ds = BITRATE_424KBITS;
//}
//else if (ats.ta1.ds & 0x01)
//{
// ds = BITRATE_212KBITS;
//}
//else
//{
// ds = BITRATE_106KBITS;
//}
if (ats.ta1.ds & 0x01)
{
ds = BITRATE_212KBITS;
}
else
{
ds = BITRATE_106KBITS;
}
//// Not working at 848 or 424
//if (ats.ta1.dr & 0x04)
//{
// dr = BITRATE_848KBITS;
//}
//else if (ats.ta1.dr & 0x02)
//{
// dr = BITRATE_424KBITS;
//}
//else if (ats.ta1.dr & 0x01)
//{
// dr = BITRATE_212KBITS;
//}
//else
//{
// dr = BITRATE_106KBITS;
//}
if (ats.ta1.dr & 0x01)
{
dr = BITRATE_212KBITS;
}
else
{
dr = BITRATE_106KBITS;
}
PICC_PPS(ds, dr);
}
}
}
}
return STATUS_OK;
} // End PICC_Select()
/**
* Transmits a Request command for Answer To Select (ATS).
*
* @return STATUS_OK on success, STATUS_??? otherwise.
*/
MFRC522::StatusCode MFRC522Extended::PICC_RequestATS(Ats *ats)
{
byte count;
MFRC522::StatusCode result;
byte bufferATS[FIFO_SIZE];
byte bufferSize = FIFO_SIZE;
memset(bufferATS, 0, FIFO_SIZE);
// Build command buffer
bufferATS[0] = PICC_CMD_RATS;
// The CID defines the logical number of the addressed card and has a range of 0
// through 14; 15 is reserved for future use (RFU).
//
// FSDI codes the maximum frame size (FSD) that the terminal can receive.
//
// FSDI | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9-F
// ------------+-----+-----+-----+-----+-----+-----+-----+-----+-----+-----------
// FSD (bytes) | 16 | 24 | 32 | 40 | 48 | 64 | 96 | 128 | 256 | RFU > 256
//
bufferATS[1] = 0x50; // FSD=64, CID=0
// Calculate CRC_A
result = PCD_CalculateCRC(bufferATS, 2, &bufferATS[2]);
if (result != STATUS_OK) {
return result;
}
// Transmit the buffer and receive the response, validate CRC_A.
result = PCD_TransceiveData(bufferATS, 4, bufferATS, &bufferSize, NULL, 0, true);
if (result != STATUS_OK) {
PICC_HaltA();
}
// Set the ats structure data
ats->size = bufferATS[0];
// T0 byte:
//
// b8 | b7 | b6 | b5 | b4 | b3 | b2 | b1 | Meaning
//----+----+----+----+----+----+----+----+---------------------------
// 0 | ...| ...| ...| ...|... | ...| ...| Set to 0 (RFU)
// 0 | 1 | x | x | ...|... | ...| ...| TC1 transmitted
// 0 | x | 1 | x | ...|... | ...| ...| TB1 transmitted
// 0 | x | x | 1 | ...|... | ...| ...| TA1 transmitted
// 0 | ...| ...| ...| x | x | x | x | Maximum frame size (FSCI)
//
// FSCI | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9-F
// ------------+-----+-----+-----+-----+-----+-----+-----+-----+-----+-----------
// FSC (bytes) | 16 | 24 | 32 | 40 | 48 | 64 | 96 | 128 | 256 | RFU > 256
//
// Default FSCI is 2 (32 bytes)
if (ats->size > 0x01)
{
// TC1, TB1 and TA1 where NOT transmitted
ats->ta1.transmitted = (bool)(bufferATS[1] & 0x40);
ats->tb1.transmitted = (bool)(bufferATS[1] & 0x20);
ats->tc1.transmitted = (bool)(bufferATS[1] & 0x10);
// Decode FSCI
switch (bufferATS[1] & 0x0F)
{
case 0x00:
ats->fsc = 16;
break;
case 0x01:
ats->fsc = 24;
break;
case 0x02:
ats->fsc = 32;
break;
case 0x03:
ats->fsc = 40;
break;
case 0x04:
ats->fsc = 48;
break;
case 0x05:
ats->fsc = 64;
break;
case 0x06:
ats->fsc = 96;
break;
case 0x07:
ats->fsc = 128;
break;
case 0x08:
// This value cannot be hold by a byte
// The reason I ignore it is that MFRC255 FIFO is 64 bytes so this is not a possible value (or atleast it shouldn't)
//ats->fsc = 256;
break;
// TODO: What to do with RFU (Reserved for future use)?
}
// TA1
if (ats->ta1.transmitted)
{
ats->ta1.sameD = (bool)(bufferATS[2] & 0x80);
ats->ta1.ds = (TagBitRates)((bufferATS[2] & 0x70) >> 4);
ats->ta1.dr = (TagBitRates)(bufferATS[2] & 0x07);
}
else
{
// Default TA1
ats->ta1.ds = BITRATE_106KBITS;
ats->ta1.dr = BITRATE_106KBITS;
}
// TB1
if (ats->tb1.transmitted)
{
uint8_t tb1Index = 2;
if (ats->ta1.transmitted)
tb1Index++;
ats->tb1.fwi = (bufferATS[tb1Index] & 0xF0) >> 4;
ats->tb1.sfgi = bufferATS[tb1Index] & 0x0F;
}
else
{
// Defaults for TB1
ats->tb1.fwi = 0; // TODO: Don't know the default for this!
ats->tb1.sfgi = 0; // The default value of SFGI is 0 (meaning that the card does not need any particular SFGT)
}
// TC1
if (ats->tc1.transmitted)
{
uint8_t tc1Index = 2;
if (ats->ta1.transmitted)
tc1Index++;
if (ats->tb1.transmitted)
tc1Index++;
ats->tc1.supportsCID = (bool)(bufferATS[tc1Index] & 0x02);
ats->tc1.supportsNAD = (bool)(bufferATS[tc1Index] & 0x01);
}
else
{
// Defaults for TC1
ats->tc1.supportsCID = true;
ats->tc1.supportsNAD = false;
}
}
else
{
// TC1, TB1 and TA1 where NOT transmitted
ats->ta1.transmitted = false;
ats->tb1.transmitted = false;
ats->tc1.transmitted = false;
// Default FSCI
ats->fsc = 32; // Defaults to FSCI 2 (32 bytes)
// Default TA1
ats->ta1.sameD = false;
ats->ta1.ds = BITRATE_106KBITS;
ats->ta1.dr = BITRATE_106KBITS;
// Defaults for TB1
ats->tb1.transmitted = false;
ats->tb1.fwi = 0; // TODO: Don't know the default for this!
ats->tb1.sfgi = 0; // The default value of SFGI is 0 (meaning that the card does not need any particular SFGT)
// Defaults for TC1
ats->tc1.transmitted = false;
ats->tc1.supportsCID = true;
ats->tc1.supportsNAD = false;
}
memcpy(ats->data, bufferATS, bufferSize - 2);
return result;
} // End PICC_RequestATS()
/**
* Transmits Protocol and Parameter Selection Request (PPS) without parameter 1
*
* @return STATUS_OK on success, STATUS_??? otherwise.
*/
MFRC522::StatusCode MFRC522Extended::PICC_PPS()
{
StatusCode result;
byte ppsBuffer[4];
byte ppsBufferSize = 4;
// Start byte: The start byte (PPS) consists of two parts:
// The upper nibble(b8b5) is set toD'to identify the PPS. All other values are RFU.
// -The lower nibble(b4b1), which is called the card identifier (CID), defines the logical number of the addressed card.
ppsBuffer[0] = 0xD0; // CID is hardcoded as 0 in RATS
ppsBuffer[1] = 0x00; // PPS0 indicates whether PPS1 is present
// Calculate CRC_A
result = PCD_CalculateCRC(ppsBuffer, 2, &ppsBuffer[2]);
if (result != STATUS_OK) {
return result;
}
// Transmit the buffer and receive the response, validate CRC_A.
result = PCD_TransceiveData(ppsBuffer, 4, ppsBuffer, &ppsBufferSize, NULL, 0, true);
if (result == STATUS_OK)
{
// Enable CRC for T=CL
byte txReg = PCD_ReadRegister(TxModeReg) | 0x80;
byte rxReg = PCD_ReadRegister(RxModeReg) | 0x80;
PCD_WriteRegister(TxModeReg, txReg);
PCD_WriteRegister(RxModeReg, rxReg);
}
return result;
} // End PICC_PPS()
/**
* Transmits Protocol and Parameter Selection Request (PPS)
*
* @return STATUS_OK on success, STATUS_??? otherwise.
*/
MFRC522::StatusCode MFRC522Extended::PICC_PPS(TagBitRates sendBitRate, ///< DS
TagBitRates receiveBitRate ///< DR
) {
StatusCode result;
byte txReg = PCD_ReadRegister(TxModeReg) & 0x8F;
byte rxReg = PCD_ReadRegister(RxModeReg) & 0x8F;
byte ppsBuffer[5];
byte ppsBufferSize = 5;
// Start byte: The start byte (PPS) consists of two parts:
// The upper nibble(b8b5) is set toD'to identify the PPS. All other values are RFU.
// -The lower nibble(b4b1), which is called the card identifier (CID), defines the logical number of the addressed card.
ppsBuffer[0] = 0xD0; // CID is hardcoded as 0 in RATS
ppsBuffer[1] = 0x11; // PPS0 indicates whether PPS1 is present
// Bit 8 - Set to '0' as MFRC522 allows different bit rates for send and receive
// Bit 4 - Set to '0' as it is Reserved for future use.
//ppsBuffer[2] = (((sendBitRate & 0x03) << 4) | (receiveBitRate & 0x03)) & 0xE7;
ppsBuffer[2] = (((sendBitRate & 0x03) << 2) | (receiveBitRate & 0x03)) & 0xE7;
// Calculate CRC_A
result = PCD_CalculateCRC(ppsBuffer, 3, &ppsBuffer[3]);
if (result != STATUS_OK) {
return result;
}
// Transmit the buffer and receive the response, validate CRC_A.
result = PCD_TransceiveData(ppsBuffer, 5, ppsBuffer, &ppsBufferSize, NULL, 0, true);
if (result == STATUS_OK)
{
// Make sure it is an answer to our PPS
// We should receive our PPS byte and 2 CRC bytes
if ((ppsBufferSize == 3) && (ppsBuffer[0] == 0xD0)) {
byte txReg = PCD_ReadRegister(TxModeReg) & 0x8F;
byte rxReg = PCD_ReadRegister(RxModeReg) & 0x8F;
// Set bit rate and enable CRC for T=CL
txReg = (txReg & 0x8F) | ((receiveBitRate & 0x03) << 4) | 0x80;
rxReg = (rxReg & 0x8F) | ((sendBitRate & 0x03) << 4) | 0x80;
rxReg &= 0xF0; //Enforce although this should be set already
// From ConfigIsoType
//rxReg |= 0x06;
PCD_WriteRegister(TxModeReg, txReg);
PCD_WriteRegister(RxModeReg, rxReg);
// At 212kBps
switch (sendBitRate) {
case BITRATE_212KBITS:
{
//PCD_WriteRegister(ModWidthReg, 0x13);
PCD_WriteRegister(ModWidthReg, 0x15);
}
break;
case BITRATE_424KBITS:
{
PCD_WriteRegister(ModWidthReg, 0x0A);
}
break;
case BITRATE_848KBITS:
{
PCD_WriteRegister(ModWidthReg, 0x05);
}
break;
default:
{
PCD_WriteRegister(ModWidthReg, 0x26); // Default value
}
break;
}
//PCD_WriteRegister(RxThresholdReg, 0x84); // ISO-14443.4 Type A (default)
//PCD_WriteRegister(ControlReg, 0x10);
delayMicroseconds(10);
}
else
{
return STATUS_ERROR;
}
}
return result;
} // End PICC_PPS()
/////////////////////////////////////////////////////////////////////////////////////
// Functions for communicating with ISO/IEC 14433-4 cards
/////////////////////////////////////////////////////////////////////////////////////
MFRC522::StatusCode MFRC522Extended::TCL_Transceive(PcbBlock *send, PcbBlock *back)
{
MFRC522::StatusCode result;
byte inBuffer[FIFO_SIZE];
byte inBufferSize = FIFO_SIZE;
byte outBuffer[send->inf.size + 5]; // PCB + CID + NAD + INF + EPILOGUE (CRC)
byte outBufferOffset = 1;
byte inBufferOffset = 1;
// Set the PCB byte
outBuffer[0] = send->prologue.pcb;
// Set the CID byte if available
if (send->prologue.pcb & 0x08) {
outBuffer[outBufferOffset] = send->prologue.cid;
outBufferOffset++;
}
// Set the NAD byte if available
if (send->prologue.pcb & 0x04) {
outBuffer[outBufferOffset] = send->prologue.nad;
outBufferOffset++;
}
// Copy the INF field if available
if (send->inf.size > 0) {
memcpy(&outBuffer[outBufferOffset], send->inf.data, send->inf.size);
outBufferOffset += send->inf.size;
}
// Is the CRC enabled for transmission?
byte txModeReg = PCD_ReadRegister(TxModeReg);
if ((txModeReg & 0x80) != 0x80) {
// Calculate CRC_A
result = PCD_CalculateCRC(outBuffer, outBufferOffset, &outBuffer[outBufferOffset]);
if (result != STATUS_OK) {
return result;
}
outBufferOffset += 2;
}
// Transceive the block
result = PCD_TransceiveData(outBuffer, outBufferOffset, inBuffer, &inBufferSize);
if (result != STATUS_OK) {
return result;
}
// We want to turn the received array back to a PcbBlock
back->prologue.pcb = inBuffer[0];
// CID byte is present?
if (send->prologue.pcb & 0x08) {
back->prologue.cid = inBuffer[inBufferOffset];
inBufferOffset++;
}
// NAD byte is present?
if (send->prologue.pcb & 0x04) {
back->prologue.nad = inBuffer[inBufferOffset];
inBufferOffset++;
}
// Check if CRC is taken care of by MFRC522
byte rxModeReg = PCD_ReadRegister(TxModeReg);
if ((rxModeReg & 0x80) != 0x80) {
Serial.print("CRC is not taken care of by MFRC522: ");
Serial.println(rxModeReg, HEX);
// Check the CRC
// We need at least the CRC_A value.
if ((int)(inBufferSize - inBufferOffset) < 2) {
return STATUS_CRC_WRONG;
}
// Verify CRC_A - do our own calculation and store the control in controlBuffer.
byte controlBuffer[2];
MFRC522::StatusCode status = PCD_CalculateCRC(inBuffer, inBufferSize - 2, controlBuffer);
if (status != STATUS_OK) {
return status;
}
if ((inBuffer[inBufferSize - 2] != controlBuffer[0]) || (inBuffer[inBufferSize - 1] != controlBuffer[1])) {
return STATUS_CRC_WRONG;
}
// Take away the CRC bytes
inBufferSize -= 2;
}
// Got more data?
if (inBufferSize > inBufferOffset) {
if ((inBufferSize - inBufferOffset) > back->inf.size) {
return STATUS_NO_ROOM;
}
memcpy(back->inf.data, &inBuffer[inBufferOffset], inBufferSize - inBufferOffset);
back->inf.size = inBufferSize - inBufferOffset;
} else {
back->inf.size = 0;
}
// If the response is a R-Block check NACK
if (((inBuffer[0] & 0xC0) == 0x80) && (inBuffer[0] & 0x20)) {
return STATUS_MIFARE_NACK;
}
return result;
}
/**
* Send an I-Block (Application)
*/
MFRC522::StatusCode MFRC522Extended::TCL_Transceive(TagInfo *tag, byte *sendData, byte sendLen, byte *backData, byte *backLen)
{
MFRC522::StatusCode result;
PcbBlock out;
PcbBlock in;
byte outBuffer[FIFO_SIZE];
byte outBufferSize = FIFO_SIZE;
byte totalBackLen = *backLen;
// This command sends an I-Block
out.prologue.pcb = 0x02;
if (tag->ats.tc1.supportsCID) {
out.prologue.pcb |= 0x08;
out.prologue.cid = 0x00; // CID is curentlly hardcoded as 0x00
}
// This command doe not support NAD
out.prologue.pcb &= 0xFB;
out.prologue.nad = 0x00;
// Set the block number
if (tag->blockNumber) {
out.prologue.pcb |= 0x01;
}
// Do we have data to send?
if (sendData && (sendLen > 0)) {
out.inf.size = sendLen;
out.inf.data = sendData;
} else {
out.inf.size = 0;
out.inf.data = NULL;
}
// Initialize the receiving data
in.inf.data = outBuffer;
in.inf.size = outBufferSize;
result = TCL_Transceive(&out, &in);
if (result != STATUS_OK) {
return result;
}
// Swap block number on success
if (tag->blockNumber)
tag->blockNumber = false;
else
tag->blockNumber = true;
if (backData && (backLen > 0)) {
if (*backLen < in.inf.size)
return STATUS_NO_ROOM;
*backLen = in.inf.size;
memcpy(backData, in.inf.data, in.inf.size);
}
// Check chaining
if (in.prologue.pcb & 0x10 == 0x00)
return result;
// Result is chained
// Send an ACK to receive more data
// TODO: Should be checked I've never needed to send an ACK
while (in.prologue.pcb & 0x10) {
byte ackData[FIFO_SIZE];
byte ackDataSize = FIFO_SIZE;
result = TCL_TransceiveRBlock(tag, true, ackData, &ackDataSize);
if (result != STATUS_OK)
return result;
if (backData && (backLen > 0)) {
if ((*backLen + ackDataSize) > totalBackLen)
return STATUS_NO_ROOM;
memcpy(&(backData[*backLen]), ackData, ackDataSize);
*backLen += ackDataSize;
}
}
return result;
} // End TCL_Transceive()
/**
* Send R-Block to the PICC.
*/
MFRC522::StatusCode MFRC522Extended::TCL_TransceiveRBlock(TagInfo *tag, bool ack, byte *backData, byte *backLen)
{
MFRC522::StatusCode result;
PcbBlock out;
PcbBlock in;
byte outBuffer[FIFO_SIZE];
byte outBufferSize = FIFO_SIZE;
// This command sends an R-Block
if (ack)
out.prologue.pcb = 0xA2; // ACK
else
out.prologue.pcb = 0xB2; // NAK
if (tag->ats.tc1.supportsCID) {
out.prologue.pcb |= 0x08;
out.prologue.cid = 0x00; // CID is curentlly hardcoded as 0x00
}
// This command doe not support NAD
out.prologue.pcb &= 0xFB;
out.prologue.nad = 0x00;
// Set the block number
if (tag->blockNumber) {
out.prologue.pcb |= 0x01;
}
// No INF data for R-Block
out.inf.size = 0;
out.inf.data = NULL;
// Initialize the receiving data
in.inf.data = outBuffer;
in.inf.size = outBufferSize;
result = TCL_Transceive(&out, &in);
if (result != STATUS_OK) {
return result;
}
// Swap block number on success
if (tag->blockNumber)
tag->blockNumber = false;
else
tag->blockNumber = true;
if (backData && backLen) {
if (*backLen < in.inf.size)
return STATUS_NO_ROOM;
*backLen = in.inf.size;
memcpy(backData, in.inf.data, in.inf.size);
}
return result;
} // End TCL_TransceiveRBlock()
/**
* Send an S-Block to deselect the card.
*/
MFRC522::StatusCode MFRC522Extended::TCL_Deselect(TagInfo *tag)
{
MFRC522::StatusCode result;
byte outBuffer[4];
byte outBufferSize = 1;
byte inBuffer[FIFO_SIZE];
byte inBufferSize = FIFO_SIZE;
outBuffer[0] = 0xC2;
if (tag->ats.tc1.supportsCID)
{
outBuffer[0] |= 0x08;
outBuffer[1] = 0x00; // CID is hardcoded
outBufferSize = 2;
}
result = PCD_TransceiveData(outBuffer, outBufferSize, inBuffer, &inBufferSize);
if (result != STATUS_OK) {
return result;
}
// TODO:Maybe do some checks? In my test it returns: CA 00 (Same data as I sent to my card)
return result;
} // End TCL_Deselect()
/////////////////////////////////////////////////////////////////////////////////////
// Support functions
/////////////////////////////////////////////////////////////////////////////////////
/**
* Get the PICC type.
*
* @return PICC_Type
*/
MFRC522::PICC_Type MFRC522Extended::PICC_GetType(TagInfo *tag ///< The TagInfo returned from PICC_Select().
) {
// http://www.nxp.com/documents/application_note/AN10833.pdf
// 3.2 Coding of Select Acknowledge (SAK)
// ignore 8-bit (iso14443 starts with LSBit = bit 1)
// fixes wrong type for manufacturer Infineon (http://nfc-tools.org/index.php?title=ISO14443A)
byte sak = tag->uid.sak & 0x7F;
switch (sak) {
case 0x04: return PICC_TYPE_NOT_COMPLETE; // UID not complete
case 0x09: return PICC_TYPE_MIFARE_MINI;
case 0x08: return PICC_TYPE_MIFARE_1K;
case 0x18: return PICC_TYPE_MIFARE_4K;
case 0x00: return PICC_TYPE_MIFARE_UL;
case 0x10:
case 0x11: return PICC_TYPE_MIFARE_PLUS;
case 0x01: return PICC_TYPE_TNP3XXX;
case 0x20:
if (tag->atqa == 0x0344)
return PICC_TYPE_MIFARE_DESFIRE;
return PICC_TYPE_ISO_14443_4;
case 0x40: return PICC_TYPE_ISO_18092;
default: return PICC_TYPE_UNKNOWN;
}
} // End PICC_GetType()
/**
* Dumps debug info about the selected PICC to Serial.
* On success the PICC is halted after dumping the data.
* For MIFARE Classic the factory default key of 0xFFFFFFFFFFFF is tried.
*/
void MFRC522Extended::PICC_DumpToSerial(TagInfo *tag)
{
MIFARE_Key key;
// Dump UID, SAK and Type
PICC_DumpDetailsToSerial(tag);
// Dump contents
PICC_Type piccType = MFRC522::PICC_GetType(tag->uid.sak);
switch (piccType) {
case PICC_TYPE_MIFARE_MINI:
case PICC_TYPE_MIFARE_1K:
case PICC_TYPE_MIFARE_4K:
// All keys are set to FFFFFFFFFFFFh at chip delivery from the factory.
for (byte i = 0; i < 6; i++) {
key.keyByte[i] = 0xFF;
}
PICC_DumpMifareClassicToSerial(&tag->uid, piccType, &key);
break;
case PICC_TYPE_MIFARE_UL:
PICC_DumpMifareUltralightToSerial();
break;
case PICC_TYPE_ISO_14443_4:
case PICC_TYPE_MIFARE_DESFIRE:
PICC_DumpISO14443_4(tag);
Serial.println(F("Dumping memory contents not implemented for that PICC type."));
break;
case PICC_TYPE_ISO_18092:
case PICC_TYPE_MIFARE_PLUS:
case PICC_TYPE_TNP3XXX:
Serial.println(F("Dumping memory contents not implemented for that PICC type."));
break;
case PICC_TYPE_UNKNOWN:
case PICC_TYPE_NOT_COMPLETE:
default:
break; // No memory dump here
}
Serial.println();
PICC_HaltA(); // Already done if it was a MIFARE Classic PICC.
}
/**
* Dumps card info (UID,SAK,Type) about the selected PICC to Serial.
*/
void MFRC522Extended::PICC_DumpDetailsToSerial(TagInfo *tag ///< Pointer to TagInfo struct returned from a successful PICC_Select().
) {
// ATQA
Serial.print(F("Card ATQA:"));
if (((tag->atqa & 0xFF00u) >> 8) < 0x10)
Serial.print(F(" 0"));
Serial.print((tag->atqa & 0xFF00u) >> 8, HEX);
if ((tag->atqa & 0x00FFu) < 0x10)
Serial.print(F("0"));
else
Serial.print(F(" "));
Serial.println(tag->atqa & 0x00FFu, HEX);
// UID
Serial.print(F("Card UID:"));
for (byte i = 0; i < tag->uid.size; i++) {
if (tag->uid.uidByte[i] < 0x10)
Serial.print(F(" 0"));
else
Serial.print(F(" "));
Serial.print(tag->uid.uidByte[i], HEX);
}
Serial.println();
// SAK
Serial.print(F("Card SAK: "));
if (tag->uid.sak < 0x10)
Serial.print(F("0"));
Serial.println(tag->uid.sak, HEX);
// (suggested) PICC type
PICC_Type piccType = PICC_GetType(tag);
Serial.print(F("PICC type: "));
Serial.println(PICC_GetTypeName(piccType));
} // End PICC_DumpDetailsToSerial()
/**
* Dumps memory contents of a ISO-14443-4 PICC.
*/
void MFRC522Extended::PICC_DumpISO14443_4(TagInfo *tag)
{
// ATS
if (tag->ats.size > 0x00) { // The first byte is the ATS length including the length byte
Serial.print(F("Card ATS:"));
for (byte offset = 0; offset < tag->ats.size; offset++) {
if (tag->ats.data[offset] < 0x10)
Serial.print(F(" 0"));
else
Serial.print(F(" "));
Serial.print(tag->ats.data[offset], HEX);
}
Serial.println();
}
} // End PICC_DumpISO14443_4
/////////////////////////////////////////////////////////////////////////////////////
// Convenience functions - does not add extra functionality
/////////////////////////////////////////////////////////////////////////////////////
/**
* Returns true if a PICC responds to PICC_CMD_REQA.
* Only "new" cards in state IDLE are invited. Sleeping cards in state HALT are ignored.
*
* @return bool
*/
bool MFRC522Extended::PICC_IsNewCardPresent() {
byte bufferATQA[2];
byte bufferSize = sizeof(bufferATQA);
// Reset baud rates
PCD_WriteRegister(TxModeReg, 0x00);
PCD_WriteRegister(RxModeReg, 0x00);
// Reset ModWidthReg
PCD_WriteRegister(ModWidthReg, 0x26);
MFRC522::StatusCode result = PICC_RequestA(bufferATQA, &bufferSize);
if (result == STATUS_OK || result == STATUS_COLLISION) {
tag.atqa = ((uint16_t)bufferATQA[1] << 8) | bufferATQA[0];
tag.ats.size = 0;
tag.ats.fsc = 32; // default FSC value
// Defaults for TA1
tag.ats.ta1.transmitted = false;
tag.ats.ta1.sameD = false;
tag.ats.ta1.ds = MFRC522Extended::BITRATE_106KBITS;
tag.ats.ta1.dr = MFRC522Extended::BITRATE_106KBITS;
// Defaults for TB1
tag.ats.tb1.transmitted = false;
tag.ats.tb1.fwi = 0; // TODO: Don't know the default for this!
tag.ats.tb1.sfgi = 0; // The default value of SFGI is 0 (meaning that the card does not need any particular SFGT)
// Defaults for TC1
tag.ats.tc1.transmitted = false;
tag.ats.tc1.supportsCID = true;
tag.ats.tc1.supportsNAD = false;
memset(tag.ats.data, 0, FIFO_SIZE - 2);
tag.blockNumber = false;
return true;
}
return false;
} // End PICC_IsNewCardPresent()
/**
* Simple wrapper around PICC_Select.
* Returns true if a UID could be read.
* Remember to call PICC_IsNewCardPresent(), PICC_RequestA() or PICC_WakeupA() first.
* The read UID is available in the class variable uid.
*
* @return bool
*/
bool MFRC522Extended::PICC_ReadCardSerial() {
MFRC522::StatusCode result = PICC_Select(&tag.uid);
// Backward compatibility
uid.size = tag.uid.size;
uid.sak = tag.uid.sak;
memcpy(uid.uidByte, tag.uid.uidByte, sizeof(tag.uid.uidByte));
if (result != STATUS_OK)
return false;
return true;
} // End