Merge from Sthing

This commit is contained in:
Miguel Balboa
2013-10-21 11:03:08 -05:00
11 changed files with 2106 additions and 924 deletions

1373
MFRC522.cpp Normal file

File diff suppressed because it is too large Load Diff

324
MFRC522.h Normal file
View File

@@ -0,0 +1,324 @@
/**
* MFRC522.h - Library to use ARDUINO RFID MODULE KIT 13.56 MHZ WITH TAGS SPI W AND R BY COOQROBOT.
* Based on code Dr.Leong ( WWW.B2CQSHOP.COM )
* Created by Miguel Balboa (circuitito.com), Jan, 2012.
* Rewritten by Søren Thing Andersen (access.thing.dk), fall of 2013 (Translation to English, refactored, comments, anti collision, cascade levels.)
* Released into the public domain.
*
* Please read this file for an overview and then MFRC522.cpp for comments on the specific functions.
* Search for "mf-rc522" on ebay.com to purchase the MF-RC522 board.
*
* There are three hardware components involved:
* 1) The micro controller: An Arduino
* 2) The PCD (short for Proximity Coupling Device): NXP MFRC522 Contactless Reader IC
* 3) The PICC (short for Proximity Integrated Circuit Card): A card or tag using the ISO 14443A interface, eg Mifare or NTAG203.
*
* The microcontroller and card reader uses SPI for communication.
* The protocol is described in the MFRC522 datasheet: http://www.nxp.com/documents/data_sheet/MFRC522.pdf
*
* The card reader and the tags communicate using a 13.56MHz electromagnetic field.
* The protocol is defined in ISO/IEC 14443-3 Identification cards -- Contactless integrated circuit cards -- Proximity cards -- Part 3: Initialization and anticollision".
* A free version of the final draft can be found at http://wg8.de/wg8n1496_17n3613_Ballot_FCD14443-3.pdf
* Details are found in chapter 6, Type A Initialization and anticollision.
*
* If only the PICC UID is wanted, the above documents has all the needed information.
* To read and write from MIFARE PICCs, the MIFARE protocol is used after the PICC has been selected.
* The MIFARE Classic chips and protocol is described in the datasheets:
* 1K: http://www.nxp.com/documents/data_sheet/MF1S503x.pdf
* 4K: http://www.nxp.com/documents/data_sheet/MF1S703x.pdf
* Mini: http://www.idcardmarket.com/download/mifare_S20_datasheet.pdf
* The MIFARE Ultralight chip and protocol is described in the datasheets:
* Ultralight: http://www.nxp.com/documents/data_sheet/MF0ICU1.pdf
* Ultralight C: http://www.nxp.com/documents/short_data_sheet/MF0ICU2_SDS.pdf
*
* MIFARE Classic 1K (MF1S503x):
* Has 16 sectors * 4 blocks/sector * 16 bytes/block = 1024 bytes.
* The blocks are numbered 0-63.
* Block 3 in each sector is the Sector Trailer. See http://www.nxp.com/documents/data_sheet/MF1S503x.pdf sections 8.6 and 8.7:
* Bytes 0-5: Key A
* Bytes 6-8: Access Bits
* Bytes 9: User data
* Bytes 10-15: Key B (or user data)
* Block 0 is read only manufacturer data.
* To access a block, an authentication using a key from the block's sector must be performed first.
* Example: To read from block 10, first authenticate using a key from sector 3 (blocks 8-11).
* All keys are set to FFFFFFFFFFFFh at chip delivery.
* Warning: Please read section 8.7 "Memory Access". It includes this text: if the PICC detects a format violation the whole sector is irreversibly blocked.
* To use a block in "value block" mode (for Increment/Decrement operations) you need to change the sector trailer. Use PICC_SetAccessBits() to calculate the bit patterns.
* MIFARE Classic 4K (MF1S703x):
* Has (32 sectors * 4 blocks/sector + 8 sectors * 16 blocks/sector) * 16 bytes/block = 4096 bytes.
* The blocks are numbered 0-255.
* The last block in each sector is the Sector Trailer like above.
* MIFARE Classic Mini (MF1 IC S20):
* Has 5 sectors * 4 blocks/sector * 16 bytes/block = 320 bytes.
* The blocks are numbered 0-19.
* The last block in each sector is the Sector Trailer like above.
*
* MIFARE Ultralight (MF0ICU1):
* Has 16 pages of 4 bytes = 64 bytes.
* Pages 0 + 1 is used for the 7-byte UID.
* Page 2 contains the last chech digit for the UID, one byte manufacturer internal data, and the lock bytes (see http://www.nxp.com/documents/data_sheet/MF0ICU1.pdf section 8.5.2)
* Page 3 is OTP, One Time Programmable bits. Once set to 1 they cannot revert to 0.
* Pages 4-15 are read/write unless blocked by the lock bytes in page 2.
* MIFARE Ultralight C (MF0ICU2):
* Has 48 pages of 4 bytes = 64 bytes.
* Pages 0 + 1 is used for the 7-byte UID.
* Page 2 contains the last chech digit for the UID, one byte manufacturer internal data, and the lock bytes (see http://www.nxp.com/documents/data_sheet/MF0ICU1.pdf section 8.5.2)
* Page 3 is OTP, One Time Programmable bits. Once set to 1 they cannot revert to 0.
* Pages 4-39 are read/write unless blocked by the lock bytes in page 2.
* Page 40 Lock bytes
* Page 41 16 bit one way counter
* Pages 42-43 Authentication configuration
* Pages 44-47 Authentication key
*/
#ifndef MFRC522_h
#define MFRC522_h
#include <Arduino.h>
#include <SPI.h>
class MFRC522 {
public:
// MFRC522 registers. Described in chapter 9 of the datasheet.
// When using SPI all addresses are shifted one bit left in the "SPI address byte" (section 8.1.2.3)
enum PCD_Register {
// Page 0: Command and status
// 0x00 // reserved for future use
CommandReg = 0x01 << 1, // starts and stops command execution
ComIEnReg = 0x02 << 1, // enable and disable interrupt request control bits
DivIEnReg = 0x03 << 1, // enable and disable interrupt request control bits
ComIrqReg = 0x04 << 1, // interrupt request bits
DivIrqReg = 0x05 << 1, // interrupt request bits
ErrorReg = 0x06 << 1, // error bits showing the error status of the last command executed
Status1Reg = 0x07 << 1, // communication status bits
Status2Reg = 0x08 << 1, // receiver and transmitter status bits
FIFODataReg = 0x09 << 1, // input and output of 64 byte FIFO buffer
FIFOLevelReg = 0x0A << 1, // number of bytes stored in the FIFO buffer
WaterLevelReg = 0x0B << 1, // level for FIFO underflow and overflow warning
ControlReg = 0x0C << 1, // miscellaneous control registers
BitFramingReg = 0x0D << 1, // adjustments for bit-oriented frames
CollReg = 0x0E << 1, // bit position of the first bit-collision detected on the RF interface
// 0x0F // reserved for future use
// Page 1:Command
// 0x10 // reserved for future use
ModeReg = 0x11 << 1, // defines general modes for transmitting and receiving
TxModeReg = 0x12 << 1, // defines transmission data rate and framing
RxModeReg = 0x13 << 1, // defines reception data rate and framing
TxControlReg = 0x14 << 1, // controls the logical behavior of the antenna driver pins TX1 and TX2
TxASKReg = 0x15 << 1, // controls the setting of the transmission modulation
TxSelReg = 0x16 << 1, // selects the internal sources for the antenna driver
RxSelReg = 0x17 << 1, // selects internal receiver settings
RxThresholdReg = 0x18 << 1, // selects thresholds for the bit decoder
DemodReg = 0x19 << 1, // defines demodulator settings
// 0x1A // reserved for future use
// 0x1B // reserved for future use
MfTxReg = 0x1C << 1, // controls some MIFARE communication transmit parameters
MfRxReg = 0x1D << 1, // controls some MIFARE communication receive parameters
// 0x1E // reserved for future use
SerialSpeedReg = 0x1F << 1, // selects the speed of the serial UART interface
// Page 2: Configuration
// 0x20 // reserved for future use
CRCResultRegH = 0x21 << 1, // shows the MSB and LSB values of the CRC calculation
CRCResultRegL = 0x22 << 1,
// 0x23 // reserved for future use
ModWidthReg = 0x24 << 1, // controls the ModWidth setting?
// 0x25 // reserved for future use
RFCfgReg = 0x26 << 1, // configures the receiver gain
GsNReg = 0x27 << 1, // selects the conductance of the antenna driver pins TX1 and TX2 for modulation
CWGsPReg = 0x28 << 1, // defines the conductance of the p-driver output during periods of no modulation
ModGsPReg = 0x29 << 1, // defines the conductance of the p-driver output during periods of modulation
TModeReg = 0x2A << 1, // defines settings for the internal timer
TPrescalerReg = 0x2B << 1, // the lower 8 bits of the TPrescaler value. The 4 high bits are in TModeReg.
TReloadRegH = 0x2C << 1, // defines the 16-bit timer reload value
TReloadRegL = 0x2D << 1,
TCounterValueRegH = 0x2E << 1, // shows the 16-bit timer value
TCounterValueRegL = 0x2F << 1,
// Page 3:Test Registers
// 0x30 // reserved for future use
TestSel1Reg = 0x31 << 1, // general test signal configuration
TestSel2Reg = 0x32 << 1, // general test signal configuration
TestPinEnReg = 0x33 << 1, // enables pin output driver on pins D1 to D7
TestPinValueReg = 0x34 << 1, // defines the values for D1 to D7 when it is used as an I/O bus
TestBusReg = 0x35 << 1, // shows the status of the internal test bus
AutoTestReg = 0x36 << 1, // controls the digital self test
VersionReg = 0x37 << 1, // shows the software version
AnalogTestReg = 0x38 << 1, // controls the pins AUX1 and AUX2
TestDAC1Reg = 0x39 << 1, // defines the test value for TestDAC1
TestDAC2Reg = 0x3A << 1, // defines the test value for TestDAC2
TestADCReg = 0x3B << 1 // shows the value of ADC I and Q channels
// 0x3C // reserved for production tests
// 0x3D // reserved for production tests
// 0x3E // reserved for production tests
// 0x3F // reserved for production tests
};
// MFRC522 comands. Described in chapter 10 of the datasheet.
enum PCD_Command {
PCD_Idle = 0x00, // no action, cancels current command execution
PCD_Mem = 0x01, // stores 25 bytes into the internal buffer
PCD_GenerateRandomID = 0x02, // generates a 10-byte random ID number
PCD_CalcCRC = 0x03, // activates the CRC coprocessor or performs a self test
PCD_Transmit = 0x04, // transmits data from the FIFO buffer
PCD_NoCmdChange = 0x07, // no command change, can be used to modify the CommandReg register bits without affecting the command, for example, the PowerDown bit
PCD_Receive = 0x08, // activates the receiver circuits
PCD_Transceive = 0x0C, // transmits data from FIFO buffer to antenna and automatically activates the receiver after transmission
PCD_MFAuthent = 0x0E, // performs the MIFARE standard authentication as a reader
PCD_SoftReset = 0x0F // resets the MFRC522
};
// Commands sent to the PICC.
enum PICC_Command {
// The commands used by the PCD to manage communication with several PICCs (ISO 14443-3, Type A, section 6.4)
PICC_CMD_REQA = 0x26, // REQuest command, Type A. Invites PICCs in state IDLE to go to READY and prepare for anticollision or selection. 7 bit frame.
PICC_CMD_WUPA = 0x52, // Wake-UP command, Type A. Invites PICCs in state IDLE and HALT to go to READY(*) and prepare for anticollision or selection. 7 bit frame.
PICC_CMD_CT = 0x88, // Cascade Tag. Not really a command, but used during anti collision.
PICC_CMD_SEL_CL1 = 0x93, // Anti collision/Select, Cascade Level 1
PICC_CMD_SEL_CL2 = 0x95, // Anti collision/Select, Cascade Level 1
PICC_CMD_SEL_CL3 = 0x97, // Anti collision/Select, Cascade Level 1
PICC_CMD_HLTA = 0x50, // HaLT command, Type A. Instructs an ACTIVE PICC to go to state HALT.
// The commands used for MIFARE Classic (from http://www.nxp.com/documents/data_sheet/MF1S503x.pdf, Section 9)
// Use PCD_MFAuthent to authenticate access to a sector, then use these commands to read/write/modify the blocks on the sector.
// The read/write commands can also be used for MIFARE Ultralight.
PICC_CMD_MF_AUTH_KEY_A = 0x60, // Perform authentication with Key A
PICC_CMD_MF_AUTH_KEY_B = 0x61, // Perform authentication with Key B
PICC_CMD_MF_READ = 0x30, // Reads one 16 byte block from the authenticated sector of the PICC. Also used for MIFARE Ultralight.
PICC_CMD_MF_WRITE = 0xA0, // Writes one 16 byte block to the authenticated sector of the PICC. Called "COMPATIBILITY WRITE" for MIFARE Ultralight.
PICC_CMD_MF_DECREMENT = 0xC0, // Decrements the contents of a block and stores the result in the internal data register.
PICC_CMD_MF_INCREMENT = 0xC1, // Increments the contents of a block and stores the result in the internal data register.
PICC_CMD_MF_RESTORE = 0xC2, // Reads the contents of a block into the internal data register.
PICC_CMD_MF_TRANSFER = 0xB0, // Writes the contents of the internal data register to a block.
// The commands used for MIFARE Ultralight (from http://www.nxp.com/documents/data_sheet/MF0ICU1.pdf, Section 8.6)
// The PICC_CMD_MF_READ and PICC_CMD_MF_WRITE can also be used for MIFARE Ultralight.
PICC_CMD_UL_WRITE = 0xA2 // Writes one 4 byte page to the PICC.
};
// MIFARE constants that does not fit anywhere else
enum MIFARE_Misc {
MF_ACK = 0xA, // The MIFARE Classic uses a 4 bit ACK/NAK. Any other value than 0xA is NAK.
MF_KEY_SIZE = 6 // A Mifare Crypto1 key is 6 bytes.
};
// PICC types we can detect. Remember to update PICC_GetTypeName() if you add more.
enum PICC_Type {
PICC_TYPE_UNKNOWN = 0,
PICC_TYPE_ISO_14443_4 = 1, // PICC compliant with ISO/IEC 14443-4
PICC_TYPE_ISO_18092 = 2, // PICC compliant with ISO/IEC 18092 (NFC)
PICC_TYPE_MIFARE_MINI = 3, // MIFARE Classic protocol, 320 bytes
PICC_TYPE_MIFARE_1K = 4, // MIFARE Classic protocol, 1KB
PICC_TYPE_MIFARE_4K = 5, // MIFARE Classic protocol, 4KB
PICC_TYPE_MIFARE_UL = 6, // MIFARE Ultralight or Ultralight C
PICC_TYPE_MIFARE_PLUS = 7, // MIFARE Plus
PICC_TYPE_TNP3XXX = 8, // Only mentioned in NXP AN 10833 MIFARE Type Identification Procedure
PICC_TYPE_NOT_COMPLETE = 255 // SAK indicates UID is not complete.
};
// Return codes from the functions in this class. Remember to update GetStatusCodeName() if you add more.
enum StatusCode {
STATUS_OK = 1, // Success
STATUS_ERROR = 2, // Error in communication
STATUS_COLLISION = 3, // Collission detected
STATUS_TIMEOUT = 4, // Timeout in communication.
STATUS_NO_ROOM = 5, // A buffer is not big enough.
STATUS_INTERNAL_ERROR = 6, // Internal error in the code. Should not happen ;-)
STATUS_INVALID = 7, // Invalid argument.
STATUS_CRC_WRONG = 8, // The CRC_A does not match
STATUS_MIFARE_NACK = 9 // A MIFARE PICC responded with NAK.
};
// A struct used for passing the UID of a PICC.
typedef struct {
byte size; // Number of bytes in the UID. 4, 7 or 10.
byte uidByte[10];
byte sak; // The SAK (Select acknowledge) byte returned from the PICC after successful selection.
} Uid;
// A struct used for passing a MIFARE Crypto1 key
typedef struct {
byte keyByte[MF_KEY_SIZE];
} MIFARE_Key;
// Member variables
Uid uid; // Used by PICC_ReadCardSerial().
// Size of the MFRC522 FIFO
static const byte FIFO_SIZE = 64; // The FIFO is 64 bytes.
/////////////////////////////////////////////////////////////////////////////////////
// Functions for setting up the Arduino
/////////////////////////////////////////////////////////////////////////////////////
MFRC522(byte chipSelectPin, byte resetPowerDownPin);
void setSPIConfig();
/////////////////////////////////////////////////////////////////////////////////////
// Basic interface functions for communicating with the MFRC522
/////////////////////////////////////////////////////////////////////////////////////
void PCD_WriteRegister(byte reg, byte value);
void PCD_WriteRegister(byte reg, byte count, byte *values);
byte PCD_ReadRegister(byte reg);
void PCD_ReadRegister(byte reg, byte count, byte *values, byte rxAlign = 0);
void setBitMask(unsigned char reg, unsigned char mask);
void PCD_SetRegisterBitMask(byte reg, byte mask);
void PCD_ClearRegisterBitMask(byte reg, byte mask);
byte PCD_CalculateCRC(byte *data, byte length, byte *result);
/////////////////////////////////////////////////////////////////////////////////////
// Functions for manipulating the MFRC522
/////////////////////////////////////////////////////////////////////////////////////
void PCD_Init();
void PCD_Reset();
void PCD_AntennaOn();
/////////////////////////////////////////////////////////////////////////////////////
// Functions for communicating with PICCs
/////////////////////////////////////////////////////////////////////////////////////
byte PCD_TransceiveData(byte *sendData, byte sendLen, byte *backData, byte *backLen, byte *validBits = NULL, byte rxAlign = 0, bool checkCRC = false);
byte PCD_CommunicateWithPICC(byte command, byte waitIRq, byte *sendData, byte sendLen, byte *backData = NULL, byte *backLen = NULL, byte *validBits = NULL, byte rxAlign = 0, bool checkCRC = false);
byte PICC_RequestA(byte *bufferATQA, byte *bufferSize);
byte PICC_WakeupA(byte *bufferATQA, byte *bufferSize);
byte PICC_REQA_or_WUPA( byte command, byte *bufferATQA, byte *bufferSize);
byte PICC_Select(Uid *uid, byte validBits = 0);
byte PICC_HaltA();
/////////////////////////////////////////////////////////////////////////////////////
// Functions for communicating with MIFARE PICCs
/////////////////////////////////////////////////////////////////////////////////////
byte PCD_Authenticate(byte command, byte blockAddr, MIFARE_Key *key, Uid *uid);
void PCD_StopCrypto1();
byte MIFARE_Read(byte blockAddr, byte *buffer, byte *bufferSize);
byte MIFARE_Write(byte blockAddr, byte *buffer, byte bufferSize);
byte MIFARE_Decrement(byte blockAddr, long delta);
byte MIFARE_Increment(byte blockAddr, long delta);
byte MIFARE_Restore(byte blockAddr);
byte MIFARE_Transfer(byte blockAddr);
byte MIFARE_Ultralight_Write(byte page, byte *buffer, byte bufferSize);
/////////////////////////////////////////////////////////////////////////////////////
// Support functions
/////////////////////////////////////////////////////////////////////////////////////
byte PCD_MIFARE_Transceive( byte *sendData, byte sendLen, bool acceptTimeout = false);
const char *GetStatusCodeName(byte code);
byte PICC_GetType(byte sak);
const char *PICC_GetTypeName(byte type);
void PICC_DumpToSerial(Uid *uid);
void PICC_DumpMifareClassicToSerial(Uid *uid, byte piccType, MIFARE_Key *key);
void PICC_DumpMifareClassicSectorToSerial(Uid *uid, MIFARE_Key *key, byte sector);
void PICC_DumpMifareUltralightToSerial();
void MIFARE_SetAccessBits(byte *accessBitBuffer, byte g0, byte g1, byte g2, byte g3);
/////////////////////////////////////////////////////////////////////////////////////
// Convenience functions - does not add extra functionality
/////////////////////////////////////////////////////////////////////////////////////
bool PICC_IsNewCardPresent();
bool PICC_ReadCardSerial();
private:
byte _chipSelectPin; // Arduino pin connected to MFRC522's SPI slave select input (Pin 24, NSS, active low)
byte _resetPowerDownPin; // Arduino pin connected to MFRC522's reset and power down input (Pin 6, NRSTPD, active low)
byte MIFARE_TwoStepHelper(byte command, byte blockAddr, long data);
};
#endif

487
RFID.cpp
View File

@@ -1,487 +0,0 @@
/*
* RFID.cpp - Library to use ARDUINO RFID MODULE KIT 13.56 MHZ WITH TAGS SPI W AND R BY COOQROBOT.
* Based on code Dr.Leong ( WWW.B2CQSHOP.COM )
* Created by Miguel Balboa, Jan, 2012.
* Released into the public domain.
*/
/******************************************************************************
* Includes
******************************************************************************/
#include <Arduino.h>
#include <RFID.h>
/******************************************************************************
* User API
******************************************************************************/
/**
* Construct RFID
* int chipSelectPin RFID /ENABLE pin
*/
RFID::RFID(int chipSelectPin, int NRSTPD)
{
_chipSelectPin = chipSelectPin;
pinMode(_chipSelectPin,OUTPUT); // Set digital as OUTPUT to connect it to the RFID /ENABLE pin
digitalWrite(_chipSelectPin, LOW);
pinMode(NRSTPD,OUTPUT); // Set digital pin, Not Reset and Power-down
digitalWrite(NRSTPD, HIGH);
_NRSTPD = NRSTPD;
}
/******************************************************************************
* User API
******************************************************************************/
bool RFID::isCard()
{
unsigned char status;
unsigned char str[MAX_LEN];
status = MFRC522Request(PICC_REQIDL, str);
if (status == MI_OK) {
return true;
} else {
return false;
}
}
bool RFID::readCardSerial(){
unsigned char status;
unsigned char str[MAX_LEN];
// Anti-colisi<73>n, devuelva el n<>mero de serie de tarjeta de 4 bytes
status = anticoll(str);
memcpy(serNum, str, 5);
if (status == MI_OK) {
return true;
} else {
return false;
}
}
/******************************************************************************
* Dr.Leong ( WWW.B2CQSHOP.COM )
******************************************************************************/
void RFID::init()
{
digitalWrite(_NRSTPD,HIGH);
reset();
//Timer: TPrescaler*TreloadVal/6.78MHz = 24ms
writeMFRC522(TModeReg, 0x8D); //Tauto=1; f(Timer) = 6.78MHz/TPreScaler
writeMFRC522(TPrescalerReg, 0x3E); //TModeReg[3..0] + TPrescalerReg
writeMFRC522(TReloadRegL, 30);
writeMFRC522(TReloadRegH, 0);
writeMFRC522(TxAutoReg, 0x40); //100%ASK
writeMFRC522(ModeReg, 0x3D); // CRC valor inicial de 0x6363
//ClearBitMask(Status2Reg, 0x08); //MFCrypto1On=0
//writeMFRC522(RxSelReg, 0x86); //RxWait = RxSelReg[5..0]
//writeMFRC522(RFCfgReg, 0x7F); //RxGain = 48dB
antennaOn(); //Abre la antena
}
void RFID::reset()
{
writeMFRC522(CommandReg, PCD_RESETPHASE);
}
void RFID::writeMFRC522(unsigned char addr, unsigned char val)
{
digitalWrite(_chipSelectPin, LOW);
//0XXXXXX0 formato de direcci<63>n
SPI.transfer((addr<<1)&0x7E);
SPI.transfer(val);
digitalWrite(_chipSelectPin, HIGH);
}
void RFID::antennaOn(void)
{
unsigned char temp;
temp = readMFRC522(TxControlReg);
if (!(temp & 0x03))
{
setBitMask(TxControlReg, 0x03);
}
}
/*
* Read_MFRC522 Nombre de la funci<63>n: Read_MFRC522
* Descripci<63>n: Desde el MFRC522 leer un byte de un registro de datos
* Los par<61>metros de entrada: addr - la direcci<63>n de registro
* Valor de retorno: Devuelve un byte de datos de lectura
*/
unsigned char RFID::readMFRC522(unsigned char addr)
{
unsigned char val;
digitalWrite(_chipSelectPin, LOW);
SPI.transfer(((addr<<1)&0x7E) | 0x80);
val =SPI.transfer(0x00);
digitalWrite(_chipSelectPin, HIGH);
return val;
}
void RFID::setBitMask(unsigned char reg, unsigned char mask)
{
unsigned char tmp;
tmp = readMFRC522(reg);
writeMFRC522(reg, tmp | mask); // set bit mask
}
void RFID::clearBitMask(unsigned char reg, unsigned char mask)
{
unsigned char tmp;
tmp = readMFRC522(reg);
writeMFRC522(reg, tmp & (~mask)); // clear bit mask
}
void RFID::calculateCRC(unsigned char *pIndata, unsigned char len, unsigned char *pOutData)
{
unsigned char i, n;
clearBitMask(DivIrqReg, 0x04); //CRCIrq = 0
setBitMask(FIFOLevelReg, 0x80); //Claro puntero FIFO
//Write_MFRC522(CommandReg, PCD_IDLE);
//Escribir datos en el FIFO
for (i=0; i<len; i++)
{
writeMFRC522(FIFODataReg, *(pIndata+i));
}
writeMFRC522(CommandReg, PCD_CALCCRC);
// Esperar a la finalizaci<63>n de c<>lculo del CRC
i = 0xFF;
do
{
n = readMFRC522(DivIrqReg);
i--;
}
while ((i!=0) && !(n&0x04)); //CRCIrq = 1
//Lea el c<>lculo de CRC
pOutData[0] = readMFRC522(CRCResultRegL);
pOutData[1] = readMFRC522(CRCResultRegM);
}
unsigned char RFID::MFRC522ToCard(unsigned char command, unsigned char *sendData, unsigned char sendLen, unsigned char *backData, unsigned int *backLen)
{
unsigned char status = MI_ERR;
unsigned char irqEn = 0x00;
unsigned char waitIRq = 0x00;
unsigned char lastBits;
unsigned char n;
unsigned int i;
switch (command)
{
case PCD_AUTHENT: // Tarjetas de certificaci<63>n cerca
{
irqEn = 0x12;
waitIRq = 0x10;
break;
}
case PCD_TRANSCEIVE: //La transmisi<73>n de datos FIFO
{
irqEn = 0x77;
waitIRq = 0x30;
break;
}
default:
break;
}
writeMFRC522(CommIEnReg, irqEn|0x80); //De solicitud de interrupci<63>n
clearBitMask(CommIrqReg, 0x80); // Borrar todos los bits de petici<63>n de interrupci<63>n
setBitMask(FIFOLevelReg, 0x80); //FlushBuffer=1, FIFO de inicializaci<63>n
writeMFRC522(CommandReg, PCD_IDLE); //NO action;Y cancelar el comando
//Escribir datos en el FIFO
for (i=0; i<sendLen; i++)
{
writeMFRC522(FIFODataReg, sendData[i]);
}
//???? ejecutar el comando
writeMFRC522(CommandReg, command);
if (command == PCD_TRANSCEIVE)
{
setBitMask(BitFramingReg, 0x80); //StartSend=1,transmission of data starts
}
// A la espera de recibir datos para completar
i = 2000; //i????????,??M1???????25ms ??? i De acuerdo con el ajuste de frecuencia de reloj, el tiempo m<>ximo de espera operaci<63>n M1 25ms tarjeta??
do
{
//CommIrqReg[7..0]
//Set1 TxIRq RxIRq IdleIRq HiAlerIRq LoAlertIRq ErrIRq TimerIRq
n = readMFRC522(CommIrqReg);
i--;
}
while ((i!=0) && !(n&0x01) && !(n&waitIRq));
clearBitMask(BitFramingReg, 0x80); //StartSend=0
if (i != 0)
{
if(!(readMFRC522(ErrorReg) & 0x1B)) //BufferOvfl Collerr CRCErr ProtecolErr
{
status = MI_OK;
if (n & irqEn & 0x01)
{
status = MI_NOTAGERR; //??
}
if (command == PCD_TRANSCEIVE)
{
n = readMFRC522(FIFOLevelReg);
lastBits = readMFRC522(ControlReg) & 0x07;
if (lastBits)
{
*backLen = (n-1)*8 + lastBits;
}
else
{
*backLen = n*8;
}
if (n == 0)
{
n = 1;
}
if (n > MAX_LEN)
{
n = MAX_LEN;
}
//??FIFO??????? Lea los datos recibidos en el FIFO
for (i=0; i<n; i++)
{
backData[i] = readMFRC522(FIFODataReg);
}
}
}
else
{
status = MI_ERR;
}
}
//SetBitMask(ControlReg,0x80); //timer stops
//Write_MFRC522(CommandReg, PCD_IDLE);
return status;
}
/*
* Nombre de la funci<63>n: MFRC522_Request
* Descripci<63>n: Buscar las cartas, leer el n<>mero de tipo de tarjeta
* Los par<61>metros de entrada: reqMode - encontrar el modo de tarjeta,
* Tagtype - Devuelve el tipo de tarjeta
* 0x4400 = Mifare_UltraLight
* 0x0400 = Mifare_One(S50)
* 0x0200 = Mifare_One(S70)
* 0x0800 = Mifare_Pro(X)
* 0x4403 = Mifare_DESFire
* Valor de retorno: el retorno exitoso MI_OK
*/
unsigned char RFID::MFRC522Request(unsigned char reqMode, unsigned char *TagType)
{
unsigned char status;
unsigned int backBits; // Recibi<62> bits de datos
writeMFRC522(BitFramingReg, 0x07); //TxLastBists = BitFramingReg[2..0] ???
TagType[0] = reqMode;
status = MFRC522ToCard(PCD_TRANSCEIVE, TagType, 1, TagType, &backBits);
if ((status != MI_OK) || (backBits != 0x10))
{
status = MI_ERR;
}
return status;
}
/**
* MFRC522Anticoll -> anticoll
* Anti-detecci<63>n de colisiones, la lectura del n<>mero de serie de la tarjeta de tarjeta
* @param serNum - devuelve el n<>mero de tarjeta 4 bytes de serie, los primeros 5 bytes de bytes de paridad
* @return retorno exitoso MI_OK
*/
unsigned char RFID::anticoll(unsigned char *serNum)
{
unsigned char status;
unsigned char i;
unsigned char serNumCheck=0;
unsigned int unLen;
//ClearBitMask(Status2Reg, 0x08); //TempSensclear
//ClearBitMask(CollReg,0x80); //ValuesAfterColl
writeMFRC522(BitFramingReg, 0x00); //TxLastBists = BitFramingReg[2..0]
serNum[0] = PICC_ANTICOLL;
serNum[1] = 0x20;
status = MFRC522ToCard(PCD_TRANSCEIVE, serNum, 2, serNum, &unLen);
if (status == MI_OK)
{
//?????? Compruebe el n<>mero de serie de la tarjeta
for (i=0; i<4; i++)
{
serNumCheck ^= serNum[i];
}
if (serNumCheck != serNum[i])
{
status = MI_ERR;
}
}
//SetBitMask(CollReg, 0x80); //ValuesAfterColl=1
return status;
}
/*
* MFRC522Auth -> auth
* Verificar la contrase<73>a de la tarjeta
* Los par<61>metros de entrada: AuthMode - Modo de autenticaci<63>n de contrase<73>a
0x60 = A 0x60 = validaci<63>n KeyA
0x61 = B 0x61 = validaci<63>n KeyB
BlockAddr-- bloque de direcciones
Sectorkey-- sector contrase<73>a
serNum--,4? Tarjeta de n<>mero de serie, 4 bytes
* MI_OK Valor de retorno: el retorno exitoso MI_OK
*/
unsigned char RFID::auth(unsigned char authMode, unsigned char BlockAddr, unsigned char *Sectorkey, unsigned char *serNum)
{
unsigned char status;
unsigned int recvBits;
unsigned char i;
unsigned char buff[12];
//????+???+????+???? Verifique la direcci<63>n de comandos de bloques del sector + + contrase<73>a + n<>mero de la tarjeta de serie
buff[0] = authMode;
buff[1] = BlockAddr;
for (i=0; i<6; i++)
{
buff[i+2] = *(Sectorkey+i);
}
for (i=0; i<4; i++)
{
buff[i+8] = *(serNum+i);
}
status = MFRC522ToCard(PCD_AUTHENT, buff, 12, buff, &recvBits);
if ((status != MI_OK) || (!(readMFRC522(Status2Reg) & 0x08)))
{
status = MI_ERR;
}
return status;
}
/*
* MFRC522Read -> read
* Lectura de datos de bloque
* Los par<61>metros de entrada: blockAddr - direcci<63>n del bloque; recvData - leer un bloque de datos
* MI_OK Valor de retorno: el retorno exitoso MI_OK
*/
unsigned char RFID::read(unsigned char blockAddr, unsigned char *recvData)
{
unsigned char status;
unsigned int unLen;
recvData[0] = PICC_READ;
recvData[1] = blockAddr;
calculateCRC(recvData,2, &recvData[2]);
status = MFRC522ToCard(PCD_TRANSCEIVE, recvData, 4, recvData, &unLen);
if ((status != MI_OK) || (unLen != 0x90))
{
status = MI_ERR;
}
return status;
}
/*
* MFRC522Write -> write
* La escritura de datos de bloque
* blockAddr - direcci<63>n del bloque; WriteData - para escribir 16 bytes del bloque de datos
* Valor de retorno: el retorno exitoso MI_OK
*/
unsigned char RFID::write(unsigned char blockAddr, unsigned char *writeData)
{
unsigned char status;
unsigned int recvBits;
unsigned char i;
unsigned char buff[18];
buff[0] = PICC_WRITE;
buff[1] = blockAddr;
calculateCRC(buff, 2, &buff[2]);
status = MFRC522ToCard(PCD_TRANSCEIVE, buff, 4, buff, &recvBits);
if ((status != MI_OK) || (recvBits != 4) || ((buff[0] & 0x0F) != 0x0A))
{
status = MI_ERR;
}
if (status == MI_OK)
{
for (i=0; i<16; i++) //?FIFO?16Byte?? Datos a la FIFO 16Byte escribir
{
buff[i] = *(writeData+i);
}
calculateCRC(buff, 16, &buff[16]);
status = MFRC522ToCard(PCD_TRANSCEIVE, buff, 18, buff, &recvBits);
if ((status != MI_OK) || (recvBits != 4) || ((buff[0] & 0x0F) != 0x0A))
{
status = MI_ERR;
}
}
return status;
}
/*
* MFRC522Halt -> halt
* Cartas de Mando para dormir
* Los par<61>metros de entrada: Ninguno
* Valor devuelto: Ninguno
*/
void RFID::halt()
{
unsigned char status;
unsigned int unLen;
unsigned char buff[4];
buff[0] = PICC_HALT;
buff[1] = 0;
calculateCRC(buff, 2, &buff[2]);
clearBitMask(Status2Reg, 0x08); // turn off encryption
status = MFRC522ToCard(PCD_TRANSCEIVE, buff, 4, buff,&unLen);
}

151
RFID.h
View File

@@ -1,151 +0,0 @@
/* RFID.h - Library to use ARDUINO RFID MODULE KIT 13.56 MHZ WITH TAGS SPI W AND R BY COOQROBOT.
* Based on code Dr.Leong ( WWW.B2CQSHOP.COM )
* Created by Miguel Balboa (circuitito.com), Jan, 2012.
*/
#ifndef RFID_h
#define RFID_h
#include <Arduino.h>
#include <SPI.h>
/******************************************************************************
* Definitions
******************************************************************************/
#define MAX_LEN 16 // Largo m<>ximo de la matriz
//MF522 comando palabra
#define PCD_IDLE 0x00 // NO action; Y cancelar el comando
#define PCD_AUTHENT 0x0E // autenticaci<63>n de clave
#define PCD_RECEIVE 0x08 // recepci<63>n de datos
#define PCD_TRANSMIT 0x04 // Enviar datos
#define PCD_TRANSCEIVE 0x0C // Enviar y recibir datos
#define PCD_RESETPHASE 0x0F // reajustar
#define PCD_CALCCRC 0x03 // CRC calcular
//Mifare_One Tarjeta Mifare_One comando palabra
#define PICC_REQIDL 0x26 // <20>rea de la antena no est<73> tratando de entrar en el estado de reposo
#define PICC_REQALL 0x52 // Todas las cartas para encontrar el <20>rea de la antena
#define PICC_ANTICOLL 0x93 // anti-colisi<73>n
#define PICC_SElECTTAG 0x93 // elecci<63>n de tarjeta
#define PICC_AUTHENT1A 0x60 // verificaci<63>n key A
#define PICC_AUTHENT1B 0x61 // verificaci<63>n Key B
#define PICC_READ 0x30 // leer bloque
#define PICC_WRITE 0xA0 // Escribir en el bloque
#define PICC_DECREMENT 0xC0 // cargo
#define PICC_INCREMENT 0xC1 // recargar
#define PICC_RESTORE 0xC2 // Transferencia de datos de bloque de buffer
#define PICC_TRANSFER 0xB0 // Guardar los datos en el b<>fer
#define PICC_HALT 0x50 // inactividad
//MF522 C<>digo de error de comunicaci<63>n cuando regres<65>
#define MI_OK 0
#define MI_NOTAGERR 1
#define MI_ERR 2
//------------------ MFRC522 registro---------------
//Page 0:Command and Status
#define Reserved00 0x00
#define CommandReg 0x01
#define CommIEnReg 0x02
#define DivlEnReg 0x03
#define CommIrqReg 0x04
#define DivIrqReg 0x05
#define ErrorReg 0x06
#define Status1Reg 0x07
#define Status2Reg 0x08
#define FIFODataReg 0x09
#define FIFOLevelReg 0x0A
#define WaterLevelReg 0x0B
#define ControlReg 0x0C
#define BitFramingReg 0x0D
#define CollReg 0x0E
#define Reserved01 0x0F
//Page 1:Command
#define Reserved10 0x10
#define ModeReg 0x11
#define TxModeReg 0x12
#define RxModeReg 0x13
#define TxControlReg 0x14
#define TxAutoReg 0x15
#define TxSelReg 0x16
#define RxSelReg 0x17
#define RxThresholdReg 0x18
#define DemodReg 0x19
#define Reserved11 0x1A
#define Reserved12 0x1B
#define MifareReg 0x1C
#define Reserved13 0x1D
#define Reserved14 0x1E
#define SerialSpeedReg 0x1F
//Page 2:CFG
#define Reserved20 0x20
#define CRCResultRegM 0x21
#define CRCResultRegL 0x22
#define Reserved21 0x23
#define ModWidthReg 0x24
#define Reserved22 0x25
#define RFCfgReg 0x26
#define GsNReg 0x27
#define CWGsPReg 0x28
#define ModGsPReg 0x29
#define TModeReg 0x2A
#define TPrescalerReg 0x2B
#define TReloadRegH 0x2C
#define TReloadRegL 0x2D
#define TCounterValueRegH 0x2E
#define TCounterValueRegL 0x2F
//Page 3:TestRegister
#define Reserved30 0x30
#define TestSel1Reg 0x31
#define TestSel2Reg 0x32
#define TestPinEnReg 0x33
#define TestPinValueReg 0x34
#define TestBusReg 0x35
#define AutoTestReg 0x36
#define VersionReg 0x37
#define AnalogTestReg 0x38
#define TestDAC1Reg 0x39
#define TestDAC2Reg 0x3A
#define TestADCReg 0x3B
#define Reserved31 0x3C
#define Reserved32 0x3D
#define Reserved33 0x3E
#define Reserved34 0x3F
//-----------------------------------------------
class RFID
{
public:
RFID(int chipSelectPin, int NRSTPD);
bool isCard();
bool readCardSerial();
void init();
void reset();
void writeMFRC522(unsigned char addr, unsigned char val);
void antennaOn(void);
unsigned char readMFRC522(unsigned char addr);
void setBitMask(unsigned char reg, unsigned char mask);
void clearBitMask(unsigned char reg, unsigned char mask);
void calculateCRC(unsigned char *pIndata, unsigned char len, unsigned char *pOutData);
unsigned char MFRC522Request(unsigned char reqMode, unsigned char *TagType);
unsigned char MFRC522ToCard(unsigned char command, unsigned char *sendData, unsigned char sendLen, unsigned char *backData, unsigned int *backLen);
unsigned char anticoll(unsigned char *serNum);
unsigned char auth(unsigned char authMode, unsigned char BlockAddr, unsigned char *Sectorkey, unsigned char *serNum);
unsigned char read(unsigned char blockAddr, unsigned char *recvData);
unsigned char write(unsigned char blockAddr, unsigned char *writeData);
void halt();
unsigned char serNum[5]; // Constante para guardar el numero de serie leido.
unsigned char AserNum[5]; // Constante para guardar el numero d serie de la secion actual.
private:
int _chipSelectPin;
int _NRSTPD;
};
#endif

9
changes.txt Normal file
View File

@@ -0,0 +1,9 @@
Renamed library from RFID to MFRC522 (RFID seemed to generic).
Register names changed to comply with datasheet.
Global defines moved into class.
All constants, functions and parameters are now commented in English.
Code refactored, most function names have changed.
Now supports ISO-14443-3 anti collission and 4/7/10 byte UIDs (cascade levels).
Added functions for MIFARE Classic Decrement/Increment/Restore/Transfer and MIFARE Ultralight Write.
New examples written.

View File

@@ -0,0 +1,52 @@
/*
* MFRC522 - Library to use ARDUINO RFID MODULE KIT 13.56 MHZ WITH TAGS SPI W AND R BY COOQROBOT.
* The library file MFRC522.h has a wealth of useful info. Please read it.
* The functions are documented in MFRC522.cpp.
*
* Based on code Dr.Leong ( WWW.B2CQSHOP.COM )
* Created by Miguel Balboa (circuitito.com), Jan, 2012.
* Rewritten by Søren Thing Andersen (access.thing.dk), fall of 2013 (Translation to English, refactored, comments, anti collision, cascade levels.)
* Released into the public domain.
*
* Sample program showing how to read data from a PICC using a MFRC522 reader on the Arduino SPI interface.
* Pin layout should be as follows:
* Signal Pin Pin
* Arduino Uno MFRC522 board
* -----------------------------------------
* Reset 9 RST
* SPI SS 10 SDA
* SPI MOSI 11 MOSI
* SPI MISO 12 MISO
* SPI SCK 13 SCK
*
* The reader can be found on eBay for around 5 dollars. Search for "mf-rc522" on ebay.com.
*/
#include <SPI.h>
#include <MFRC522.h>
#define SS_PIN 10
#define RST_PIN 9
MFRC522 mfrc522(SS_PIN, RST_PIN); // Create MFRC522 instance.
void setup() {
Serial.begin(9600); // Initialize serial communications with the PC
SPI.begin(); // Init SPI bus
mfrc522.PCD_Init(); // Init MFRC522 card
Serial.println("Scan PICC to see UID and type...");
}
void loop() {
// Look for new cards
if ( ! mfrc522.PICC_IsNewCardPresent()) {
return;
}
// Select one of the cards
if ( ! mfrc522.PICC_ReadCardSerial()) {
return;
}
// Dump debug info about the card. PICC_HaltA() is automatically called.
mfrc522.PICC_DumpToSerial(&(mfrc522.uid));
}

View File

@@ -0,0 +1,197 @@
/*
* MFRC522 - Library to use ARDUINO RFID MODULE KIT 13.56 MHZ WITH TAGS SPI W AND R BY COOQROBOT.
* The library file MFRC522.h has a wealth of useful info. Please read it.
* The functions are documented in MFRC522.cpp.
*
* Based on code Dr.Leong ( WWW.B2CQSHOP.COM )
* Created by Miguel Balboa (circuitito.com), Jan, 2012.
* Rewritten by Søren Thing Andersen (access.thing.dk), fall of 2013 (Translation to English, refactored, comments, anti collision, cascade levels.)
* Released into the public domain.
*
* This sample shows how to setup a block on a MIFARE Classic PICC to be in "Value Block" mode.
* In Value Block mode the operations Increment/Decrement/Restore and Transfer can be used.
*
* Pin layout should be as follows:
* Signal Pin Pin
* Arduino Uno MFRC522 board
* -----------------------------------------
* Reset 9 RST
* SPI SS 10 SDA
* SPI MOSI 11 MOSI
* SPI MISO 12 MISO
* SPI SCK 13 SCK
*
* The reader can be found on eBay for around 5 dollars. Search for "mf-rc522" on ebay.com.
*/
#include <SPI.h>
#include <MFRC522.h>
#define SS_PIN 10
#define RST_PIN 9
MFRC522 mfrc522(SS_PIN, RST_PIN); // Create MFRC522 instance.
void setup() {
Serial.begin(9600); // Initialize serial communications with the PC
SPI.begin(); // Init SPI bus
mfrc522.PCD_Init(); // Init MFRC522 card
Serial.println("Scan a MIFARE Classic PICC to demonstrate Value Blocks.");
}
void loop() {
// Look for new cards
if ( ! mfrc522.PICC_IsNewCardPresent()) {
return;
}
// Select one of the cards
if ( ! mfrc522.PICC_ReadCardSerial()) {
return;
}
// Now a card is selected. The UID and SAK is in mfrc522.uid.
// Dump UID
Serial.print("Card UID:");
for (byte i = 0; i < mfrc522.uid.size; i++) {
Serial.print(mfrc522.uid.uidByte[i] < 0x10 ? " 0" : " ");
Serial.print(mfrc522.uid.uidByte[i], HEX);
}
Serial.println();
// Dump PICC type
byte piccType = mfrc522.PICC_GetType(mfrc522.uid.sak);
Serial.print("PICC type: ");
Serial.println(mfrc522.PICC_GetTypeName(piccType));
if ( piccType != MFRC522::PICC_TYPE_MIFARE_MINI
&& piccType != MFRC522::PICC_TYPE_MIFARE_1K
&& piccType != MFRC522::PICC_TYPE_MIFARE_4K) {
Serial.println("This sample only works with MIFARE Classic cards.");
return;
}
// Prepare key - all keys are set to FFFFFFFFFFFFh at chip delivery from the factory.
MFRC522::MIFARE_Key key;
for (byte i = 0; i < 6; i++) {
key.keyByte[i] = 0xFF;
}
// In this sample we use the second sector (ie block 4-7).
byte sector = 1;
byte valueBlockA = 5;
byte valueBlockB = 6;
byte trailerBlock = 7;
// Authenticate using key A.
Serial.println("Authenticating using key A...");
byte status;
status = mfrc522.PCD_Authenticate(MFRC522::PICC_CMD_MF_AUTH_KEY_A, trailerBlock, &key, &(mfrc522.uid));
if (status != MFRC522::STATUS_OK) {
Serial.print("PCD_Authenticate() failed: ");
Serial.println(mfrc522.GetStatusCodeName(status));
return;
}
// We need a sector trailer that defines blocks 5 and 6 as Value Blocks and enables key B.
byte trailerBuffer[] = { 255,255,255,255,255,255, 0,0,0, 0, 255,255,255,255,255,255}; // Keep default keys.
// g1=6 => Set block 5 as value block. Must use Key B towrite & increment, A or B can be used for derement.
// g2=6 => Same thing for block 6.
// g3=3 => Key B must be used to modify the Sector Trailer. Key B becomes valid.
mfrc522.MIFARE_SetAccessBits(&trailerBuffer[6], 0, 6, 6, 3);
// Now we read the sector trailer and see if it is like we want it to be.
Serial.println("Reading sector trailer...");
byte buffer[18];
byte size = sizeof(buffer);
status = mfrc522.MIFARE_Read(trailerBlock, buffer, &size);
if (status != MFRC522::STATUS_OK) {
Serial.print("MIFARE_Read() failed: ");
Serial.println(mfrc522.GetStatusCodeName(status));
return;
}
if ( buffer[6] != trailerBuffer[6]
&& buffer[7] != trailerBuffer[7]
&& buffer[8] != trailerBuffer[8]) {
Serial.println("Writing new sector trailer...");
status = mfrc522.MIFARE_Write(trailerBlock, trailerBuffer, 16);
if (status != MFRC522::STATUS_OK) {
Serial.print("MIFARE_Write() failed: ");
Serial.println(mfrc522.GetStatusCodeName(status));
return;
}
}
// Authenticate using key B.
Serial.println("Authenticating again using key B...");
status = mfrc522.PCD_Authenticate(MFRC522::PICC_CMD_MF_AUTH_KEY_B, trailerBlock, &key, &(mfrc522.uid));
if (status != MFRC522::STATUS_OK) {
Serial.print("PCD_Authenticate() failed: ");
Serial.println(mfrc522.GetStatusCodeName(status));
return;
}
// Value blocks has a 32 bit signed value stored three times and an 8 bit address stored 4 times.
// Make sure blocks valueBlockA and valueBlockB has that format.
formatBlock(valueBlockA);
formatBlock(valueBlockB);
// Add 1 to the value of valueBlockA and store the result in valueBlockA.
Serial.print("Adding 1 to value of block "); Serial.println(valueBlockA);
status = mfrc522.MIFARE_Increment(valueBlockA, 1);
if (status != MFRC522::STATUS_OK) {
Serial.print("MIFARE_Increment() failed: ");
Serial.println(mfrc522.GetStatusCodeName(status));
return;
}
status = mfrc522.MIFARE_Transfer(valueBlockA);
if (status != MFRC522::STATUS_OK) {
Serial.print("MIFARE_Transfer() failed: ");
Serial.println(mfrc522.GetStatusCodeName(status));
return;
}
// Dump the result
mfrc522.PICC_DumpMifareClassicSectorToSerial(&(mfrc522.uid), &key, sector);
// Halt PICC
mfrc522.PICC_HaltA();
// Stop encryption on PCD
mfrc522.PCD_StopCrypto1();
}
void formatBlock(byte blockAddr) {
Serial.print("Reading block "); Serial.println(blockAddr);
byte buffer[18];
byte size = sizeof(buffer);
byte status = mfrc522.MIFARE_Read(blockAddr, buffer, &size);
if (status != MFRC522::STATUS_OK) {
Serial.print("MIFARE_Read() failed: ");
Serial.println(mfrc522.GetStatusCodeName(status));
return;
}
if ( (buffer[0] == (byte)~buffer[4])
&& (buffer[1] == (byte)~buffer[5])
&& (buffer[2] == (byte)~buffer[6])
&& (buffer[3] == (byte)~buffer[7])
&& (buffer[0] == buffer[8])
&& (buffer[1] == buffer[9])
&& (buffer[2] == buffer[10])
&& (buffer[3] == buffer[11])
&& (buffer[12] == (byte)~buffer[13])
&& (buffer[12] == buffer[14])
&& (buffer[12] == (byte)~buffer[15])) {
Serial.println("Block has correct Block Value format.");
}
else {
Serial.println("Writing new value block...");
byte valueBlock[] = { 0,0,0,0, 255,255,255,255, 0,0,0,0, blockAddr,~blockAddr,blockAddr,~blockAddr };
status = mfrc522.MIFARE_Write(blockAddr, valueBlock, 16);
if (status != MFRC522::STATUS_OK) {
Serial.print("MIFARE_Write() failed: ");
Serial.println(mfrc522.GetStatusCodeName(status));
}
}
} // End formatBlock()

View File

@@ -1,126 +0,0 @@
/**
* Read a card using a mfrc522 reader on your SPI interface
* Pin layout should be as follows (on Arduino Uno):
* MOSI: Pin 11 / ICSP-4
* MISO: Pin 12 / ICSP-1
* SCK: Pin 13 / ISCP-3
* SS: Pin 10
* RST: Pin 9
*
* Script is based on the script of Miguel Balboa.
* Serial number is shown on a HD44780 compatible display
*
* The circuit:
* LCD RS pin to digital pin (7)
* LCD Enable pin to digital pin (6)
* LCD D4 pin to digital pin 5
* LCD D5 pin to digital pin 4
* LCD D6 pin to digital pin 3
* LCD D7 pin to digital pin 2
* LCD R/W pin to ground
* 10K resistor:
* ends to +5V and ground
* wiper to LCD VO pin (pin 3)
*
* @version 0.1
* @author Henri de Jong
* @since 27-01-2013
*/
#include <SPI.h>
#include <RFID.h>
#include <LiquidCrystal.h>
#define SS_PIN 10
#define RST_PIN 9
RFID rfid(SS_PIN, RST_PIN);
LiquidCrystal lcd(7, 6, 5, 4, 3, 2);
// Setup variables:
int serNum0;
int serNum1;
int serNum2;
int serNum3;
int serNum4;
void setup()
{
Serial.begin(9600);
lcd.begin(16, 2);
SPI.begin();
rfid.init();
}
void loop()
{
if (rfid.isCard()) {
if (rfid.readCardSerial()) {
if (rfid.serNum[0] != serNum0
&& rfid.serNum[1] != serNum1
&& rfid.serNum[2] != serNum2
&& rfid.serNum[3] != serNum3
&& rfid.serNum[4] != serNum4
) {
/* With a new cardnumber, show it. */
Serial.println(" ");
Serial.println("Card found");
serNum0 = rfid.serNum[0];
serNum1 = rfid.serNum[1];
serNum2 = rfid.serNum[2];
serNum3 = rfid.serNum[3];
serNum4 = rfid.serNum[4];
//Serial.println(" ");
Serial.println("Cardnumber:");
Serial.print("Dec: ");
Serial.print(rfid.serNum[0],DEC);
Serial.print(", ");
Serial.print(rfid.serNum[1],DEC);
Serial.print(", ");
Serial.print(rfid.serNum[2],DEC);
Serial.print(", ");
Serial.print(rfid.serNum[3],DEC);
Serial.print(", ");
Serial.print(rfid.serNum[4],DEC);
Serial.println(" ");
Serial.print("Hex: ");
Serial.print(rfid.serNum[0],HEX);
Serial.print(", ");
Serial.print(rfid.serNum[1],HEX);
Serial.print(", ");
Serial.print(rfid.serNum[2],HEX);
Serial.print(", ");
Serial.print(rfid.serNum[3],HEX);
Serial.print(", ");
Serial.print(rfid.serNum[4],HEX);
Serial.println(" ");
/* Write the HEX code to the display */
lcd.clear();
lcd.setCursor(0, 0);
lcd.print("Cardno (hex):");
lcd.setCursor(0,1);
lcd.print(rfid.serNum[0], HEX);
lcd.print(',');
lcd.print(rfid.serNum[1], HEX);
lcd.print(',');
lcd.print(rfid.serNum[2], HEX);
lcd.print(',');
lcd.print(rfid.serNum[3], HEX);
lcd.print(',');
lcd.print(rfid.serNum[4], HEX);
} else {
/* If we have the same ID, just write a dot. */
Serial.print(".");
}
}
}
rfid.halt();
}

View File

@@ -1,96 +0,0 @@
/**
* Read a card using a mfrc522 reader on your SPI interface
* Pin layout should be as follows (on Arduino Uno):
* MOSI: Pin 11 / ICSP-4
* MISO: Pin 12 / ICSP-1
* SCK: Pin 13 / ISCP-3
* SS: Pin 10
* RST: Pin 9
*
* Script is based on the script of Miguel Balboa.
* New cardnumber is printed when card has changed. Only a dot is printed
* if card is the same.
*
* @version 0.1
* @author Henri de Jong
* @since 06-01-2013
*/
#include <SPI.h>
#include <RFID.h>
#define SS_PIN 10
#define RST_PIN 9
RFID rfid(SS_PIN, RST_PIN);
// Setup variables:
int serNum0;
int serNum1;
int serNum2;
int serNum3;
int serNum4;
void setup()
{
Serial.begin(9600);
SPI.begin();
rfid.init();
}
void loop()
{
if (rfid.isCard()) {
if (rfid.readCardSerial()) {
if (rfid.serNum[0] != serNum0
&& rfid.serNum[1] != serNum1
&& rfid.serNum[2] != serNum2
&& rfid.serNum[3] != serNum3
&& rfid.serNum[4] != serNum4
) {
/* With a new cardnumber, show it. */
Serial.println(" ");
Serial.println("Card found");
serNum0 = rfid.serNum[0];
serNum1 = rfid.serNum[1];
serNum2 = rfid.serNum[2];
serNum3 = rfid.serNum[3];
serNum4 = rfid.serNum[4];
//Serial.println(" ");
Serial.println("Cardnumber:");
Serial.print("Dec: ");
Serial.print(rfid.serNum[0],DEC);
Serial.print(", ");
Serial.print(rfid.serNum[1],DEC);
Serial.print(", ");
Serial.print(rfid.serNum[2],DEC);
Serial.print(", ");
Serial.print(rfid.serNum[3],DEC);
Serial.print(", ");
Serial.print(rfid.serNum[4],DEC);
Serial.println(" ");
Serial.print("Hex: ");
Serial.print(rfid.serNum[0],HEX);
Serial.print(", ");
Serial.print(rfid.serNum[1],HEX);
Serial.print(", ");
Serial.print(rfid.serNum[2],HEX);
Serial.print(", ");
Serial.print(rfid.serNum[3],HEX);
Serial.print(", ");
Serial.print(rfid.serNum[4],HEX);
Serial.println(" ");
} else {
/* If we have the same ID, just write a dot. */
Serial.print(".");
}
}
}
rfid.halt();
}

View File

@@ -1,42 +0,0 @@
#include <SPI.h>
#include <RFID.h>
RFID rfid(10,5);
void setup()
{
Serial.begin(9600);
SPI.begin();
rfid.init();
}
void loop()
{
if (rfid.isCard()) {
Serial.println("IS CARD");
if (rfid.readCardSerial()) {
Serial.println(" ");
Serial.println("El numero de serie de la tarjeta es : ");
Serial.print(rfid.serNum[0],DEC);
Serial.print(" , ");
Serial.print(rfid.serNum[1],DEC);
Serial.print(" , ");
Serial.print(rfid.serNum[2],DEC);
Serial.print(" , ");
Serial.print(rfid.serNum[3],DEC);
Serial.print(" , ");
Serial.print(rfid.serNum[4],DEC);
Serial.println(" ");
}
}
rfid.halt();
}

View File

@@ -1,32 +1,161 @@
####################################### #######################################
# Syntax Coloring Map RFID # Syntax Coloring Map for library MFRC522
####################################### #######################################
####################################### #######################################
# Datatypes (KEYWORD1) # KEYWORD1 Classes, datatypes, and C++ keywords
####################################### #######################################
MFRC522 KEYWORD1
rfid KEYWORD1 PCD_Register KEYWORD1
PCD_Command KEYWORD1
PICC_Command KEYWORD1
MIFARE_Misc KEYWORD1
PICC_Type KEYWORD1
StatusCode KEYWORD
Uid KEYWORD
MIFARE_Key KEYWORD
#######################################
# KEYWORD2 Methods and functions
#######################################
setSPIConfig KEYWORD2
PCD_WriteRegister KEYWORD2
PCD_WriteRegister KEYWORD2
PCD_ReadRegister KEYWORD2
PCD_ReadRegister KEYWORD2
setBitMask KEYWORD2
PCD_SetRegisterBitMask KEYWORD2
PCD_ClearRegisterBitMask KEYWORD2
PCD_CalculateCRC KEYWORD2
PCD_Init KEYWORD2
PCD_Reset KEYWORD2
PCD_AntennaOn KEYWORD2
PCD_TransceiveData KEYWORD2
PCD_CommunicateWithPICC KEYWORD2
PICC_RequestA KEYWORD2
PICC_WakeupA KEYWORD2
PICC_REQA_or_WUPA KEYWORD2
PICC_Select KEYWORD2
PICC_HaltA KEYWORD2
PCD_Authenticate KEYWORD2
PCD_StopCrypto1 KEYWORD2
MIFARE_Read KEYWORD2
MIFARE_Write KEYWORD2
MIFARE_Increment KEYWORD2
MIFARE_Ultralight_Write KEYWORD2
PCD_MIFARE_Transceive KEYWORD2
PICC_GetType KEYWORD2
PICC_DumpToSerial KEYWORD2
PICC_DumpMifareClassicToSerial KEYWORD2
PICC_DumpMifareClassicSectorToSerial KEYWORD2
PICC_DumpMifareUltralightToSerial KEYWORD2
MIFARE_SetAccessBits KEYWORD2
PICC_IsNewCardPresent KEYWORD2
PICC_ReadCardSerial KEYWORD2
####################################### #######################################
# Methods and Functions (KEYWORD2) # KEYWORD3 setup and loop functions, as well as the Serial keywords
####################################### #######################################
init KEYWORD2
reset KEYWORD2
writeMFRC522 KEYWORD2
antennaOn KEYWORD2
readMFRC522 KEYWORD2
setBitMask KEYWORD2
clearBitMask KEYWORD2
calculateCRC KEYWORD2
MFRC522ToCard KEYWORD2
MFRC522Anticoll KEYWORD2
MFRC522Auth KEYWORD2
MFRC522Read KEYWORD2
MFRC522Write KEYWORD2
MFRC522Halt KEYWORD2
####################################### #######################################
# Constants (LITERAL1) LITERAL1 Constants
####################################### #######################################
CommandReg LITERAL1
ComIEnReg LITERAL1
DivIEnReg LITERAL1
ComIrqReg LITERAL1
DivIrqReg LITERAL1
ErrorReg LITERAL1
Status1Reg LITERAL1
Status2Reg LITERAL1
FIFODataReg LITERAL1
FIFOLevelReg LITERAL1
WaterLevelReg LITERAL1
ControlReg LITERAL1
BitFramingReg LITERAL1
CollReg LITERAL1
ModeReg LITERAL1
TxModeReg LITERAL1
RxModeReg LITERAL1
TxControlReg LITERAL1
TxASKReg LITERAL1
TxSelReg LITERAL1
RxSelReg LITERAL1
RxThresholdReg LITERAL1
DemodReg LITERAL1
MfTxReg LITERAL1
MfRxReg LITERAL1
SerialSpeedReg LITERAL1
CRCResultRegH LITERAL1
CRCResultRegL LITERAL1
ModWidthReg LITERAL1
RFCfgReg LITERAL1
GsNReg LITERAL1
CWGsPReg LITERAL1
ModGsPReg LITERAL1
TModeReg LITERAL1
TPrescalerReg LITERAL1
TReloadRegH LITERAL1
TReloadRegL LITERAL1
TCounterValueRegH LITERAL1
TCounterValueRegL LITERAL1
TestSel1Reg LITERAL1
TestSel2Reg LITERAL1
TestPinEnReg LITERAL1
TestPinValueReg LITERAL1
TestBusReg LITERAL1
AutoTestReg LITERAL1
VersionReg LITERAL1
AnalogTestReg LITERAL1
TestDAC1Reg LITERAL1
TestDAC2Reg LITERAL1
TestADCReg LITERAL1
PCD_Idle LITERAL1
PCD_Mem LITERAL1
PCD_GenerateRandomID LITERAL1
PCD_CalcCRC LITERAL1
PCD_Transmit LITERAL1
PCD_NoCmdChange LITERAL1
PCD_Receive LITERAL1
PCD_Transceive LITERAL1
PCD_MFAuthent LITERAL1
PCD_SoftReset LITERAL1
PICC_CMD_REQA LITERAL1
PICC_CMD_WUPA LITERAL1
PICC_CMD_CT LITERAL1
PICC_CMD_SEL_CL1 LITERAL1
PICC_CMD_SEL_CL2 LITERAL1
PICC_CMD_SEL_CL3 LITERAL1
PICC_CMD_HLTA LITERAL1
PICC_CMD_MF_AUTH_KEY_A LITERAL1
PICC_CMD_MF_AUTH_KEY_B LITERAL1
PICC_CMD_MF_READ LITERAL1
PICC_CMD_MF_WRITE LITERAL1
PICC_CMD_MF_DECREMENT LITERAL1
PICC_CMD_MF_INCREMENT LITERAL1
PICC_CMD_MF_RESTORE LITERAL1
PICC_CMD_MF_TRANSFER LITERAL1
PICC_CMD_UL_WRITE LITERAL1
MF_ACK LITERAL1
MF_KEY_SIZE LITERAL1
PICC_TYPE_UNKNOWN LITERAL1
PICC_TYPE_ISO_14443_4 LITERAL1
PICC_TYPE_ISO_18092 LITERAL1
PICC_TYPE_MIFARE_MINI LITERAL1
PICC_TYPE_MIFARE_1K LITERAL1
PICC_TYPE_MIFARE_4K LITERAL1
PICC_TYPE_MIFARE_UL LITERAL1
PICC_TYPE_MIFARE_PLUS LITERAL1
PICC_TYPE_TNP3XXX LITERAL1
PICC_TYPE_NOT_COMPLETE LITERAL1
STATUS_OK LITERAL1
STATUS_ERROR LITERAL1
STATUS_COLLISION LITERAL1
STATUS_TIMEOUT LITERAL1
STATUS_NO_ROOM LITERAL1
STATUS_INTERNAL_ERROR LITERAL1
STATUS_INVALID LITERAL1
STATUS_CRC_WRONG LITERAL1
STATUS_MIFARE_NACK LITERAL1
FIFO_SIZE LITERAL1