style space to tab
no code change, just style
This commit is contained in:
564
MFRC522.cpp
564
MFRC522.cpp
@@ -279,71 +279,69 @@ void MFRC522::PCD_SetAntennaGain(byte mask) {
|
||||
* @return Whether or not the test passed.
|
||||
*/
|
||||
bool MFRC522::PCD_PerformSelfTest() {
|
||||
// This follows directly the steps outlined in 16.1.1
|
||||
|
||||
// 1. Perform a soft reset.
|
||||
PCD_Reset();
|
||||
|
||||
// 2. Clear the internal buffer by writing 25 bytes of 00h
|
||||
byte ZEROES[25] = {0x00};
|
||||
PCD_SetRegisterBitMask(FIFOLevelReg, 0x80); // flush the FIFO buffer
|
||||
PCD_WriteRegister(FIFODataReg, 25, ZEROES); // write 25 bytes of 00h to FIFO
|
||||
PCD_WriteRegister(CommandReg, PCD_Mem); // transfer to internal buffer
|
||||
|
||||
// 3. Enable self-test
|
||||
PCD_WriteRegister(AutoTestReg, 0x09);
|
||||
|
||||
// 4. Write 00h to FIFO buffer
|
||||
PCD_WriteRegister(FIFODataReg, 0x00);
|
||||
|
||||
// 5. Start self-test by issuing the CalcCRC command
|
||||
PCD_WriteRegister(CommandReg, PCD_CalcCRC);
|
||||
|
||||
// 6. Wait for self-test to complete
|
||||
word i;
|
||||
byte n;
|
||||
for (i = 0; i < 0xFF; i++) {
|
||||
n = PCD_ReadRegister(DivIrqReg); // DivIrqReg[7..0] bits are: Set2 reserved reserved MfinActIRq reserved CRCIRq reserved reserved
|
||||
if (n & 0x04) { // CRCIRq bit set - calculation done
|
||||
break;
|
||||
}
|
||||
}
|
||||
PCD_WriteRegister(CommandReg, PCD_Idle); // Stop calculating CRC for new content in the FIFO.
|
||||
|
||||
// 7. Read out resulting 64 bytes from the FIFO buffer.
|
||||
byte result[64];
|
||||
PCD_ReadRegister(FIFODataReg, 64, result, 0);
|
||||
|
||||
// Auto self-test done
|
||||
|
||||
// Reset AutoTestReg register to be 0 again. Required for normal operation.
|
||||
PCD_WriteRegister(AutoTestReg, 0x00);
|
||||
|
||||
// Determine firmware version (see section 9.3.4.8 in spec)
|
||||
byte version = PCD_ReadRegister(VersionReg);
|
||||
|
||||
// Pick the appropriate reference values
|
||||
const byte *reference;
|
||||
switch (version) {
|
||||
case 0x91: // Version 1.0
|
||||
reference = MFRC522_firmware_referenceV1_0;
|
||||
break;
|
||||
case 0x92: // Version 2.0
|
||||
reference = MFRC522_firmware_referenceV2_0;
|
||||
break;
|
||||
default: // Unknown version
|
||||
return false;
|
||||
}
|
||||
|
||||
// Verify that the results match up to our expectations
|
||||
for (i = 0; i < 64; i++) {
|
||||
if (result[i] != pgm_read_byte(&(reference[i]))) {
|
||||
return false;
|
||||
}
|
||||
}
|
||||
|
||||
// Test passed; all is good.
|
||||
return true;
|
||||
// This follows directly the steps outlined in 16.1.1
|
||||
// 1. Perform a soft reset.
|
||||
PCD_Reset();
|
||||
|
||||
// 2. Clear the internal buffer by writing 25 bytes of 00h
|
||||
byte ZEROES[25] = {0x00};
|
||||
PCD_SetRegisterBitMask(FIFOLevelReg, 0x80); // flush the FIFO buffer
|
||||
PCD_WriteRegister(FIFODataReg, 25, ZEROES); // write 25 bytes of 00h to FIFO
|
||||
PCD_WriteRegister(CommandReg, PCD_Mem); // transfer to internal buffer
|
||||
|
||||
// 3. Enable self-test
|
||||
PCD_WriteRegister(AutoTestReg, 0x09);
|
||||
|
||||
// 4. Write 00h to FIFO buffer
|
||||
PCD_WriteRegister(FIFODataReg, 0x00);
|
||||
|
||||
// 5. Start self-test by issuing the CalcCRC command
|
||||
PCD_WriteRegister(CommandReg, PCD_CalcCRC);
|
||||
|
||||
// 6. Wait for self-test to complete
|
||||
word i;
|
||||
byte n;
|
||||
for (i = 0; i < 0xFF; i++) {
|
||||
n = PCD_ReadRegister(DivIrqReg); // DivIrqReg[7..0] bits are: Set2 reserved reserved MfinActIRq reserved CRCIRq reserved reserved
|
||||
if (n & 0x04) { // CRCIRq bit set - calculation done
|
||||
break;
|
||||
}
|
||||
}
|
||||
PCD_WriteRegister(CommandReg, PCD_Idle); // Stop calculating CRC for new content in the FIFO.
|
||||
|
||||
// 7. Read out resulting 64 bytes from the FIFO buffer.
|
||||
byte result[64];
|
||||
PCD_ReadRegister(FIFODataReg, 64, result, 0);
|
||||
|
||||
// Auto self-test done
|
||||
// Reset AutoTestReg register to be 0 again. Required for normal operation.
|
||||
PCD_WriteRegister(AutoTestReg, 0x00);
|
||||
|
||||
// Determine firmware version (see section 9.3.4.8 in spec)
|
||||
byte version = PCD_ReadRegister(VersionReg);
|
||||
|
||||
// Pick the appropriate reference values
|
||||
const byte *reference;
|
||||
switch (version) {
|
||||
case 0x91: // Version 1.0
|
||||
reference = MFRC522_firmware_referenceV1_0;
|
||||
break;
|
||||
case 0x92: // Version 2.0
|
||||
reference = MFRC522_firmware_referenceV2_0;
|
||||
break;
|
||||
default: // Unknown version
|
||||
return false;
|
||||
}
|
||||
|
||||
// Verify that the results match up to our expectations
|
||||
for (i = 0; i < 64; i++) {
|
||||
if (result[i] != pgm_read_byte(&(reference[i]))) {
|
||||
return false;
|
||||
}
|
||||
}
|
||||
|
||||
// Test passed; all is good.
|
||||
return true;
|
||||
} // End PCD_PerformSelfTest()
|
||||
|
||||
/////////////////////////////////////////////////////////////////////////////////////
|
||||
@@ -386,7 +384,7 @@ byte MFRC522::PCD_CommunicateWithPICC( byte command, ///< The command to execut
|
||||
) {
|
||||
byte n, _validBits;
|
||||
unsigned int i;
|
||||
|
||||
|
||||
// Prepare values for BitFramingReg
|
||||
byte txLastBits = validBits ? *validBits : 0;
|
||||
byte bitFraming = (rxAlign << 4) + txLastBits; // RxAlign = BitFramingReg[6..4]. TxLastBits = BitFramingReg[2..0]
|
||||
@@ -754,7 +752,7 @@ byte MFRC522::PICC_Select( Uid *uid, ///< Pointer to Uid struct. Normally outp
|
||||
byte MFRC522::PICC_HaltA() {
|
||||
byte result;
|
||||
byte buffer[4];
|
||||
|
||||
|
||||
// Build command buffer
|
||||
buffer[0] = PICC_CMD_HLTA;
|
||||
buffer[1] = 0;
|
||||
@@ -763,7 +761,7 @@ byte MFRC522::PICC_HaltA() {
|
||||
if (result != STATUS_OK) {
|
||||
return result;
|
||||
}
|
||||
|
||||
|
||||
// Send the command.
|
||||
// The standard says:
|
||||
// If the PICC responds with any modulation during a period of 1 ms after the end of the frame containing the
|
||||
@@ -853,7 +851,7 @@ byte MFRC522::MIFARE_Read( byte blockAddr, ///< MIFARE Classic: The block (0-0x
|
||||
if (buffer == NULL || *bufferSize < 18) {
|
||||
return STATUS_NO_ROOM;
|
||||
}
|
||||
|
||||
|
||||
// Build command buffer
|
||||
buffer[0] = PICC_CMD_MF_READ;
|
||||
buffer[1] = blockAddr;
|
||||
@@ -883,12 +881,12 @@ byte MFRC522::MIFARE_Write( byte blockAddr, ///< MIFARE Classic: The block (0-0x
|
||||
byte bufferSize ///< Buffer size, must be at least 16 bytes. Exactly 16 bytes are written.
|
||||
) {
|
||||
byte result;
|
||||
|
||||
|
||||
// Sanity check
|
||||
if (buffer == NULL || bufferSize < 16) {
|
||||
return STATUS_INVALID;
|
||||
}
|
||||
|
||||
|
||||
// Mifare Classic protocol requires two communications to perform a write.
|
||||
// Step 1: Tell the PICC we want to write to block blockAddr.
|
||||
byte cmdBuffer[2];
|
||||
@@ -898,13 +896,13 @@ byte MFRC522::MIFARE_Write( byte blockAddr, ///< MIFARE Classic: The block (0-0x
|
||||
if (result != STATUS_OK) {
|
||||
return result;
|
||||
}
|
||||
|
||||
|
||||
// Step 2: Transfer the data
|
||||
result = PCD_MIFARE_Transceive( buffer, bufferSize); // Adds CRC_A and checks that the response is MF_ACK.
|
||||
if (result != STATUS_OK) {
|
||||
return result;
|
||||
}
|
||||
|
||||
|
||||
return STATUS_OK;
|
||||
} // End MIFARE_Write()
|
||||
|
||||
@@ -918,12 +916,12 @@ byte MFRC522::MIFARE_Ultralight_Write( byte page, ///< The page (2-15) to writ
|
||||
byte bufferSize ///< Buffer size, must be at least 4 bytes. Exactly 4 bytes are written.
|
||||
) {
|
||||
byte result;
|
||||
|
||||
|
||||
// Sanity check
|
||||
if (buffer == NULL || bufferSize < 4) {
|
||||
return STATUS_INVALID;
|
||||
}
|
||||
|
||||
|
||||
// Build commmand buffer
|
||||
byte cmdBuffer[6];
|
||||
cmdBuffer[0] = PICC_CMD_UL_WRITE;
|
||||
@@ -992,7 +990,7 @@ byte MFRC522::MIFARE_TwoStepHelper( byte command, ///< The command to use
|
||||
) {
|
||||
byte result;
|
||||
byte cmdBuffer[2]; // We only need room for 2 bytes.
|
||||
|
||||
|
||||
// Step 1: Tell the PICC the command and block address
|
||||
cmdBuffer[0] = command;
|
||||
cmdBuffer[1] = blockAddr;
|
||||
@@ -1000,13 +998,13 @@ byte MFRC522::MIFARE_TwoStepHelper( byte command, ///< The command to use
|
||||
if (result != STATUS_OK) {
|
||||
return result;
|
||||
}
|
||||
|
||||
|
||||
// Step 2: Transfer the data
|
||||
result = PCD_MIFARE_Transceive( (byte *)&data, 4, true); // Adds CRC_A and accept timeout as success.
|
||||
if (result != STATUS_OK) {
|
||||
return result;
|
||||
}
|
||||
|
||||
|
||||
return STATUS_OK;
|
||||
} // End MIFARE_TwoStepHelper()
|
||||
|
||||
@@ -1021,7 +1019,7 @@ byte MFRC522::MIFARE_Transfer( byte blockAddr ///< The block (0-0xff) number.
|
||||
) {
|
||||
byte result;
|
||||
byte cmdBuffer[2]; // We only need room for 2 bytes.
|
||||
|
||||
|
||||
// Tell the PICC we want to transfer the result into block blockAddr.
|
||||
cmdBuffer[0] = PICC_CMD_MF_TRANSFER;
|
||||
cmdBuffer[1] = blockAddr;
|
||||
@@ -1044,17 +1042,17 @@ byte MFRC522::MIFARE_Transfer( byte blockAddr ///< The block (0-0xff) number.
|
||||
* @return STATUS_OK on success, STATUS_??? otherwise.
|
||||
*/
|
||||
byte MFRC522::MIFARE_GetValue(byte blockAddr, long *value) {
|
||||
byte status;
|
||||
byte buffer[18];
|
||||
byte size = sizeof(buffer);
|
||||
|
||||
// Read the block
|
||||
status = MIFARE_Read(blockAddr, buffer, &size);
|
||||
if (status == STATUS_OK) {
|
||||
// Extract the value
|
||||
*value = (long(buffer[3])<<24) | (long(buffer[2])<<16) | (long(buffer[1])<<8) | long(buffer[0]);
|
||||
}
|
||||
return status;
|
||||
byte status;
|
||||
byte buffer[18];
|
||||
byte size = sizeof(buffer);
|
||||
|
||||
// Read the block
|
||||
status = MIFARE_Read(blockAddr, buffer, &size);
|
||||
if (status == STATUS_OK) {
|
||||
// Extract the value
|
||||
*value = (long(buffer[3])<<24) | (long(buffer[2])<<16) | (long(buffer[1])<<8) | long(buffer[0]);
|
||||
}
|
||||
return status;
|
||||
} // End MIFARE_GetValue()
|
||||
|
||||
/**
|
||||
@@ -1069,24 +1067,24 @@ byte MFRC522::MIFARE_GetValue(byte blockAddr, long *value) {
|
||||
* @return STATUS_OK on success, STATUS_??? otherwise.
|
||||
*/
|
||||
byte MFRC522::MIFARE_SetValue(byte blockAddr, long value) {
|
||||
byte buffer[18];
|
||||
|
||||
// Translate the long into 4 bytes; repeated 2x in value block
|
||||
buffer[0] = buffer[ 8] = (value & 0xFF);
|
||||
buffer[1] = buffer[ 9] = (value & 0xFF00) >> 8;
|
||||
buffer[2] = buffer[10] = (value & 0xFF0000) >> 16;
|
||||
buffer[3] = buffer[11] = (value & 0xFF000000) >> 24;
|
||||
// Inverse 4 bytes also found in value block
|
||||
buffer[4] = ~buffer[0];
|
||||
buffer[5] = ~buffer[1];
|
||||
buffer[6] = ~buffer[2];
|
||||
buffer[7] = ~buffer[3];
|
||||
// Address 2x with inverse address 2x
|
||||
buffer[12] = buffer[14] = blockAddr;
|
||||
buffer[13] = buffer[15] = ~blockAddr;
|
||||
|
||||
// Write the whole data block
|
||||
return MIFARE_Write(blockAddr, buffer, 16);
|
||||
byte buffer[18];
|
||||
|
||||
// Translate the long into 4 bytes; repeated 2x in value block
|
||||
buffer[0] = buffer[ 8] = (value & 0xFF);
|
||||
buffer[1] = buffer[ 9] = (value & 0xFF00) >> 8;
|
||||
buffer[2] = buffer[10] = (value & 0xFF0000) >> 16;
|
||||
buffer[3] = buffer[11] = (value & 0xFF000000) >> 24;
|
||||
// Inverse 4 bytes also found in value block
|
||||
buffer[4] = ~buffer[0];
|
||||
buffer[5] = ~buffer[1];
|
||||
buffer[6] = ~buffer[2];
|
||||
buffer[7] = ~buffer[3];
|
||||
// Address 2x with inverse address 2x
|
||||
buffer[12] = buffer[14] = blockAddr;
|
||||
buffer[13] = buffer[15] = ~blockAddr;
|
||||
|
||||
// Write the whole data block
|
||||
return MIFARE_Write(blockAddr, buffer, 16);
|
||||
} // End MIFARE_SetValue()
|
||||
|
||||
/////////////////////////////////////////////////////////////////////////////////////
|
||||
@@ -1105,7 +1103,7 @@ byte MFRC522::PCD_MIFARE_Transceive( byte *sendData, ///< Pointer to the data t
|
||||
) {
|
||||
byte result;
|
||||
byte cmdBuffer[18]; // We need room for 16 bytes data and 2 bytes CRC_A.
|
||||
|
||||
|
||||
// Sanity check
|
||||
if (sendData == NULL || sendLen > 16) {
|
||||
return STATUS_INVALID;
|
||||
@@ -1230,7 +1228,7 @@ void MFRC522::PICC_DumpToSerial(Uid *uid ///< Pointer to Uid struct returned fro
|
||||
Serial.print(uid->uidByte[i], HEX);
|
||||
}
|
||||
Serial.println();
|
||||
|
||||
|
||||
// PICC type
|
||||
byte piccType = PICC_GetType(uid->sak);
|
||||
Serial.print(F("PICC type: "));
|
||||
@@ -1264,7 +1262,7 @@ void MFRC522::PICC_DumpToSerial(Uid *uid ///< Pointer to Uid struct returned fro
|
||||
default:
|
||||
break; // No memory dump here
|
||||
}
|
||||
|
||||
|
||||
Serial.println();
|
||||
PICC_HaltA(); // Already done if it was a MIFARE Classic PICC.
|
||||
} // End PICC_DumpToSerial()
|
||||
@@ -1322,7 +1320,7 @@ void MFRC522::PICC_DumpMifareClassicSectorToSerial(Uid *uid, ///< Pointer to U
|
||||
byte firstBlock; // Address of lowest address to dump actually last block dumped)
|
||||
byte no_of_blocks; // Number of blocks in sector
|
||||
bool isSectorTrailer; // Set to true while handling the "last" (ie highest address) in the sector.
|
||||
|
||||
|
||||
// The access bits are stored in a peculiar fashion.
|
||||
// There are four groups:
|
||||
// g[3] Access bits for the sector trailer, block 3 (for sectors 0-31) or block 15 (for sectors 32-39)
|
||||
@@ -1337,7 +1335,7 @@ void MFRC522::PICC_DumpMifareClassicSectorToSerial(Uid *uid, ///< Pointer to U
|
||||
byte g[4]; // Access bits for each of the four groups.
|
||||
byte group; // 0-3 - active group for access bits
|
||||
bool firstInGroup; // True for the first block dumped in the group
|
||||
|
||||
|
||||
// Determine position and size of sector.
|
||||
if (sector < 32) { // Sectors 0..31 has 4 blocks each
|
||||
no_of_blocks = 4;
|
||||
@@ -1411,7 +1409,7 @@ void MFRC522::PICC_DumpMifareClassicSectorToSerial(Uid *uid, ///< Pointer to U
|
||||
g[3] = ((c1 & 8) >> 1) | ((c2 & 8) >> 2) | ((c3 & 8) >> 3);
|
||||
isSectorTrailer = false;
|
||||
}
|
||||
|
||||
|
||||
// Which access group is this block in?
|
||||
if (no_of_blocks == 4) {
|
||||
group = blockOffset;
|
||||
@@ -1453,7 +1451,7 @@ void MFRC522::PICC_DumpMifareUltralightToSerial() {
|
||||
byte byteCount;
|
||||
byte buffer[18];
|
||||
byte i;
|
||||
|
||||
|
||||
Serial.println(F("Page 0 1 2 3"));
|
||||
// Try the mpages of the original Ultralight. Ultralight C has more pages.
|
||||
for (byte page = 0; page < 16; page +=4) { // Read returns data for 4 pages at a time.
|
||||
@@ -1512,65 +1510,65 @@ void MFRC522::MIFARE_SetAccessBits( byte *accessBitBuffer, ///< Pointer to byte
|
||||
* Of course with non-bricked devices, you're free to select them before calling this function.
|
||||
*/
|
||||
bool MFRC522::MIFARE_OpenUidBackdoor(bool logErrors) {
|
||||
// Magic sequence:
|
||||
// > 50 00 57 CD (HALT + CRC)
|
||||
// > 40 (7 bits only)
|
||||
// < A (4 bits only)
|
||||
// > 43
|
||||
// < A (4 bits only)
|
||||
// Then you can write to sector 0 without authenticating
|
||||
|
||||
PICC_HaltA(); // 50 00 57 CD
|
||||
|
||||
byte cmd = 0x40;
|
||||
byte validBits = 7; /* Our command is only 7 bits. After receiving card response,
|
||||
this will contain amount of valid response bits. */
|
||||
byte response[32]; // Card's response is written here
|
||||
byte received;
|
||||
byte status = PCD_TransceiveData(&cmd, (byte)1, response, &received, &validBits, (byte)0, false); // 40
|
||||
if( status != STATUS_OK ) {
|
||||
if( logErrors ) {
|
||||
Serial.println(F("Card did not respond to 0x40 after HALT command. Are you sure it is a UID changeable one?"));
|
||||
Serial.print(F("Error name: "));
|
||||
Serial.println(GetStatusCodeName(status));
|
||||
}
|
||||
return false;
|
||||
}
|
||||
if ( received != 1 || response[0] != 0x0A ) {
|
||||
if ( logErrors ) {
|
||||
Serial.print(F("Got bad response on backdoor 0x40 command: "));
|
||||
Serial.print(response[0], HEX);
|
||||
Serial.print(F(" ("));
|
||||
Serial.print(validBits);
|
||||
Serial.print(F(" valid bits)\r\n"));
|
||||
}
|
||||
return false;
|
||||
}
|
||||
|
||||
cmd = 0x43;
|
||||
validBits = 8;
|
||||
status = PCD_TransceiveData(&cmd, (byte)1, response, &received, &validBits, (byte)0, false); // 43
|
||||
if( status != STATUS_OK ) {
|
||||
if( logErrors ) {
|
||||
Serial.println(F("Error in communication at command 0x43, after successfully executing 0x40"));
|
||||
Serial.print(F("Error name: "));
|
||||
Serial.println(GetStatusCodeName(status));
|
||||
}
|
||||
return false;
|
||||
}
|
||||
if ( received != 1 || response[0] != 0x0A ) {
|
||||
if ( logErrors ) {
|
||||
Serial.print(F("Got bad response on backdoor 0x43 command: "));
|
||||
Serial.print(response[0], HEX);
|
||||
Serial.print(F(" ("));
|
||||
Serial.print(validBits);
|
||||
Serial.print(F(" valid bits)\r\n"));
|
||||
}
|
||||
return false;
|
||||
}
|
||||
|
||||
// You can now write to sector 0 without authenticating!
|
||||
return true;
|
||||
// Magic sequence:
|
||||
// > 50 00 57 CD (HALT + CRC)
|
||||
// > 40 (7 bits only)
|
||||
// < A (4 bits only)
|
||||
// > 43
|
||||
// < A (4 bits only)
|
||||
// Then you can write to sector 0 without authenticating
|
||||
|
||||
PICC_HaltA(); // 50 00 57 CD
|
||||
|
||||
byte cmd = 0x40;
|
||||
byte validBits = 7; /* Our command is only 7 bits. After receiving card response,
|
||||
this will contain amount of valid response bits. */
|
||||
byte response[32]; // Card's response is written here
|
||||
byte received;
|
||||
byte status = PCD_TransceiveData(&cmd, (byte)1, response, &received, &validBits, (byte)0, false); // 40
|
||||
if( status != STATUS_OK ) {
|
||||
if( logErrors ) {
|
||||
Serial.println(F("Card did not respond to 0x40 after HALT command. Are you sure it is a UID changeable one?"));
|
||||
Serial.print(F("Error name: "));
|
||||
Serial.println(GetStatusCodeName(status));
|
||||
}
|
||||
return false;
|
||||
}
|
||||
if ( received != 1 || response[0] != 0x0A ) {
|
||||
if ( logErrors ) {
|
||||
Serial.print(F("Got bad response on backdoor 0x40 command: "));
|
||||
Serial.print(response[0], HEX);
|
||||
Serial.print(F(" ("));
|
||||
Serial.print(validBits);
|
||||
Serial.print(F(" valid bits)\r\n"));
|
||||
}
|
||||
return false;
|
||||
}
|
||||
|
||||
cmd = 0x43;
|
||||
validBits = 8;
|
||||
status = PCD_TransceiveData(&cmd, (byte)1, response, &received, &validBits, (byte)0, false); // 43
|
||||
if( status != STATUS_OK ) {
|
||||
if( logErrors ) {
|
||||
Serial.println(F("Error in communication at command 0x43, after successfully executing 0x40"));
|
||||
Serial.print(F("Error name: "));
|
||||
Serial.println(GetStatusCodeName(status));
|
||||
}
|
||||
return false;
|
||||
}
|
||||
if ( received != 1 || response[0] != 0x0A ) {
|
||||
if ( logErrors ) {
|
||||
Serial.print(F("Got bad response on backdoor 0x43 command: "));
|
||||
Serial.print(response[0], HEX);
|
||||
Serial.print(F(" ("));
|
||||
Serial.print(validBits);
|
||||
Serial.print(F(" valid bits)\r\n"));
|
||||
}
|
||||
return false;
|
||||
}
|
||||
|
||||
// You can now write to sector 0 without authenticating!
|
||||
return true;
|
||||
} // End MIFARE_OpenUidBackdoor()
|
||||
|
||||
/**
|
||||
@@ -1582,121 +1580,121 @@ bool MFRC522::MIFARE_OpenUidBackdoor(bool logErrors) {
|
||||
* Make sure to have selected the card before this function is called.
|
||||
*/
|
||||
bool MFRC522::MIFARE_SetUid(byte* newUid, byte uidSize, bool logErrors) {
|
||||
|
||||
// UID + BCC byte can not be larger than 16 together
|
||||
if ( !newUid || !uidSize || uidSize > 15) {
|
||||
if ( logErrors ) {
|
||||
Serial.println(F("New UID buffer empty, size 0, or size > 15 given"));
|
||||
}
|
||||
return false;
|
||||
}
|
||||
|
||||
// Authenticate for reading
|
||||
MIFARE_Key key = {0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF};
|
||||
byte status = PCD_Authenticate(MFRC522::PICC_CMD_MF_AUTH_KEY_A, (byte)1, &key, &uid);
|
||||
if ( status != STATUS_OK ) {
|
||||
|
||||
if ( status == STATUS_TIMEOUT ) {
|
||||
// We get a read timeout if no card is selected yet, so let's select one
|
||||
|
||||
// Wake the card up again if sleeping
|
||||
// byte atqa_answer[2];
|
||||
// byte atqa_size = 2;
|
||||
// PICC_WakeupA(atqa_answer, &atqa_size);
|
||||
|
||||
if ( !PICC_IsNewCardPresent() || !PICC_ReadCardSerial() ) {
|
||||
Serial.println(F("No card was previously selected, and none are available. Failed to set UID."));
|
||||
return false;
|
||||
}
|
||||
|
||||
status = PCD_Authenticate(MFRC522::PICC_CMD_MF_AUTH_KEY_A, (byte)1, &key, &uid);
|
||||
if ( status != STATUS_OK ) {
|
||||
// We tried, time to give up
|
||||
if ( logErrors ) {
|
||||
Serial.println(F("Failed to authenticate to card for reading, could not set UID: "));
|
||||
Serial.println(GetStatusCodeName(status));
|
||||
}
|
||||
return false;
|
||||
}
|
||||
}
|
||||
else {
|
||||
if ( logErrors ) {
|
||||
Serial.print(F("PCD_Authenticate() failed: "));
|
||||
Serial.println(GetStatusCodeName(status));
|
||||
}
|
||||
return false;
|
||||
}
|
||||
}
|
||||
|
||||
// Read block 0
|
||||
byte block0_buffer[18];
|
||||
byte byteCount = sizeof(block0_buffer);
|
||||
status = MIFARE_Read((byte)0, block0_buffer, &byteCount);
|
||||
if ( status != STATUS_OK ) {
|
||||
if ( logErrors ) {
|
||||
Serial.print(F("MIFARE_Read() failed: "));
|
||||
Serial.println(GetStatusCodeName(status));
|
||||
Serial.println(F("Are you sure your KEY A for sector 0 is 0xFFFFFFFFFFFF?"));
|
||||
}
|
||||
return false;
|
||||
}
|
||||
|
||||
// Write new UID to the data we just read, and calculate BCC byte
|
||||
byte bcc = 0;
|
||||
for ( int i = 0; i < uidSize; i++ ) {
|
||||
block0_buffer[i] = newUid[i];
|
||||
bcc ^= newUid[i];
|
||||
}
|
||||
|
||||
// Write BCC byte to buffer
|
||||
block0_buffer[uidSize] = bcc;
|
||||
|
||||
// Stop encrypted traffic so we can send raw bytes
|
||||
PCD_StopCrypto1();
|
||||
|
||||
// Activate UID backdoor
|
||||
if ( !MIFARE_OpenUidBackdoor(logErrors) ) {
|
||||
if ( logErrors ) {
|
||||
Serial.println(F("Activating the UID backdoor failed."));
|
||||
}
|
||||
return false;
|
||||
}
|
||||
|
||||
// Write modified block 0 back to card
|
||||
status = MIFARE_Write((byte)0, block0_buffer, (byte)16);
|
||||
if (status != STATUS_OK) {
|
||||
if ( logErrors ) {
|
||||
Serial.print(F("MIFARE_Write() failed: "));
|
||||
Serial.println(GetStatusCodeName(status));
|
||||
}
|
||||
return false;
|
||||
}
|
||||
|
||||
// Wake the card up again
|
||||
byte atqa_answer[2];
|
||||
byte atqa_size = 2;
|
||||
PICC_WakeupA(atqa_answer, &atqa_size);
|
||||
|
||||
return true;
|
||||
|
||||
// UID + BCC byte can not be larger than 16 together
|
||||
if ( !newUid || !uidSize || uidSize > 15) {
|
||||
if ( logErrors ) {
|
||||
Serial.println(F("New UID buffer empty, size 0, or size > 15 given"));
|
||||
}
|
||||
return false;
|
||||
}
|
||||
|
||||
// Authenticate for reading
|
||||
MIFARE_Key key = {0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF};
|
||||
byte status = PCD_Authenticate(MFRC522::PICC_CMD_MF_AUTH_KEY_A, (byte)1, &key, &uid);
|
||||
if ( status != STATUS_OK ) {
|
||||
|
||||
if ( status == STATUS_TIMEOUT ) {
|
||||
// We get a read timeout if no card is selected yet, so let's select one
|
||||
|
||||
// Wake the card up again if sleeping
|
||||
// byte atqa_answer[2];
|
||||
// byte atqa_size = 2;
|
||||
// PICC_WakeupA(atqa_answer, &atqa_size);
|
||||
|
||||
if ( !PICC_IsNewCardPresent() || !PICC_ReadCardSerial() ) {
|
||||
Serial.println(F("No card was previously selected, and none are available. Failed to set UID."));
|
||||
return false;
|
||||
}
|
||||
|
||||
status = PCD_Authenticate(MFRC522::PICC_CMD_MF_AUTH_KEY_A, (byte)1, &key, &uid);
|
||||
if ( status != STATUS_OK ) {
|
||||
// We tried, time to give up
|
||||
if ( logErrors ) {
|
||||
Serial.println(F("Failed to authenticate to card for reading, could not set UID: "));
|
||||
Serial.println(GetStatusCodeName(status));
|
||||
}
|
||||
return false;
|
||||
}
|
||||
}
|
||||
else {
|
||||
if ( logErrors ) {
|
||||
Serial.print(F("PCD_Authenticate() failed: "));
|
||||
Serial.println(GetStatusCodeName(status));
|
||||
}
|
||||
return false;
|
||||
}
|
||||
}
|
||||
|
||||
// Read block 0
|
||||
byte block0_buffer[18];
|
||||
byte byteCount = sizeof(block0_buffer);
|
||||
status = MIFARE_Read((byte)0, block0_buffer, &byteCount);
|
||||
if ( status != STATUS_OK ) {
|
||||
if ( logErrors ) {
|
||||
Serial.print(F("MIFARE_Read() failed: "));
|
||||
Serial.println(GetStatusCodeName(status));
|
||||
Serial.println(F("Are you sure your KEY A for sector 0 is 0xFFFFFFFFFFFF?"));
|
||||
}
|
||||
return false;
|
||||
}
|
||||
|
||||
// Write new UID to the data we just read, and calculate BCC byte
|
||||
byte bcc = 0;
|
||||
for ( int i = 0; i < uidSize; i++ ) {
|
||||
block0_buffer[i] = newUid[i];
|
||||
bcc ^= newUid[i];
|
||||
}
|
||||
|
||||
// Write BCC byte to buffer
|
||||
block0_buffer[uidSize] = bcc;
|
||||
|
||||
// Stop encrypted traffic so we can send raw bytes
|
||||
PCD_StopCrypto1();
|
||||
|
||||
// Activate UID backdoor
|
||||
if ( !MIFARE_OpenUidBackdoor(logErrors) ) {
|
||||
if ( logErrors ) {
|
||||
Serial.println(F("Activating the UID backdoor failed."));
|
||||
}
|
||||
return false;
|
||||
}
|
||||
|
||||
// Write modified block 0 back to card
|
||||
status = MIFARE_Write((byte)0, block0_buffer, (byte)16);
|
||||
if (status != STATUS_OK) {
|
||||
if ( logErrors ) {
|
||||
Serial.print(F("MIFARE_Write() failed: "));
|
||||
Serial.println(GetStatusCodeName(status));
|
||||
}
|
||||
return false;
|
||||
}
|
||||
|
||||
// Wake the card up again
|
||||
byte atqa_answer[2];
|
||||
byte atqa_size = 2;
|
||||
PICC_WakeupA(atqa_answer, &atqa_size);
|
||||
|
||||
return true;
|
||||
}
|
||||
|
||||
/**
|
||||
* Resets entire sector 0 to zeroes, so the card can be read again by readers.
|
||||
*/
|
||||
bool MFRC522::MIFARE_UnbrickUidSector(bool logErrors) {
|
||||
MIFARE_OpenUidBackdoor( logErrors );
|
||||
|
||||
byte block0_buffer[] = {0x01, 0x02, 0x03, 0x04, 0x04, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00};
|
||||
|
||||
// Write modified block 0 back to card
|
||||
byte status = MIFARE_Write((byte)0, block0_buffer, (byte)16);
|
||||
if (status != STATUS_OK) {
|
||||
if ( logErrors ) {
|
||||
Serial.print(F("MIFARE_Write() failed: "));
|
||||
Serial.println(GetStatusCodeName(status));
|
||||
}
|
||||
return false;
|
||||
}
|
||||
MIFARE_OpenUidBackdoor( logErrors );
|
||||
|
||||
byte block0_buffer[] = {0x01, 0x02, 0x03, 0x04, 0x04, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00};
|
||||
|
||||
// Write modified block 0 back to card
|
||||
byte status = MIFARE_Write((byte)0, block0_buffer, (byte)16);
|
||||
if (status != STATUS_OK) {
|
||||
if ( logErrors ) {
|
||||
Serial.print(F("MIFARE_Write() failed: "));
|
||||
Serial.println(GetStatusCodeName(status));
|
||||
}
|
||||
return false;
|
||||
}
|
||||
}
|
||||
|
||||
/////////////////////////////////////////////////////////////////////////////////////
|
||||
|
||||
Reference in New Issue
Block a user